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Executive Summary 

The southeast US has historically enjoyed abundant water resources, with past issues 

mostly associated with flooding due to hurricane-induced tropical storms. However, 

recent decades ushered in rapid population and water demand increases, unsustainable 

agricultural expansion, severe droughts with devastating socioeconomic impacts, 

crawling urbanization, widespread river pollution, endangered ecosystems, and 

litigious transboundary water disputes.  These challenges are exemplified in the 

Apalachicola-Chattahoochee-Flint (ACF) River Basin shared by Alabama, Georgia, and 

Florida, which is the geographic focus of this study.  

The study objective is to develop a clear understanding of the impacts associated 

with climate change and to generate reliable data and information to support the on-

going regional water resources planning and management efforts.  Toward meeting this 

objective, the study undertakes (1) development of an integrated (climate-hydrology-

water resources) modeling system; (2) assessment of the historical ACF response; and 

(3) assessment of the projected ACF response under various GCM scenarios, demand 

scenarios, and regulation policies.  The study was sponsored by NOAA, Georgia 

DNR/EPD, and USGS.   

An assessment of the historical 1901-2009 period shows that the ACF exhibits 

increasing potential evapotranspiration and drier soil moisture and runoff trends. Basin 

assessments with future climate and demand scenarios indicate that drier soil moisture 

and runoff trends will continue with critical implications for agriculture and water 

management.  Severe floods are also expected to intensify. Under current regulation 

practices, climate and demand change will adversely impact lake levels, water supply 

reliability, energy generation, and ecological flows.  The study demonstrates that there 

is a critical need for flexible technical and institutional measures to mitigate and adapt 

to simultaneous climate, demand, and land use change, with adaptive management 

being a particularly effective mitigation strategy.        
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Chapter 1 

Overview of the ACF Assessment Process and Study 

1.1 Study Scope and Approach 

The southeast US has historically enjoyed abundant water resources, with past issues mostly 

associated with flooding due to hurricane-induced tropical storms. Such vulnerabilities continue 

to exist, but recent decades ushered in rapid population and water demand increases, 

unsustainable agricultural expansion, severe droughts with devastating socioeconomic impacts, 

crawling urbanization, widespread river pollution, endangered ecosystems, and litigious 

transboundary water disputes.  These challenges are exemplified in the Apalachicola-

Chattahoochee-Flint (ACF) River Basin (Figure 1.1) shared by Alabama, Georgia, and Florida, 

which provides a wealth of water resources, environmental, ecological, energy, and socio-

economic benefits and services, and is the geographic focus of this study. 

The study objective is to develop a clear understanding of the impacts associated with 

climate change and to generate reliable data and information to support the on-going regional 

water resources planning and management efforts.  Toward meeting this objective, the study 

undertakes (1) development of an integrated (climate-hydrology-water resources) modeling 

system; (2) assessment of the historical ACF response; and (3) assessment of the projected ACF 

response under various GCM scenarios, demand scenarios, and regulation policies.     

Figure 1.2 illustrates the integrated modeling framework comprising three main components: 

(1) processing of general circulation model (GCM) scenarios for bias correction and downscaling 

(climate component); (2) developing physically based conceptual models for all ACF sub-

watersheds (hydrology component); and (3) representing all ACF regulation infrastructure and 

water uses within an adaptive river and reservoir regulation and assessment model (water 
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resources component). Research contributions include new methods for (i) consistent 

temperature-precipitation downscaling; (ii) physically based watershed modeling with data 

driven functional relationships and parameters; and (iii) improved river basin management 

methods with full consideration of system uncertainty.  

1.2 Report Organization 

The ACF assessment study is described in two volumes.  The current volume is the main study 

report and includes six chapters. Chapter 2 provides background information on the historical 

ACF climate, hydrology, and water uses. Chapter 3 discusses the development of a new 

downscaling method and its application to generating temperature, precipitation, and potential 

evapotranspiration scenarios over the main ACF watersheds. Additional results and comparisons 

pertaining to this chapter are included in Appendix A. Chapter 4 describes the development of 

watershed models for all ACF watersheds and their use in characterizing the hydrologic ACF 

response under historical and future climate scenarios.  Chapter 5 focuses on water resources 

assessments under climate and demand change, and Chapter 6 summarizes the main study 

findings.  Lastly, Volume II provides an in-depth technical presentation of the decision support 

system used in the water resources assessments described in Chapter 5.    
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Figure 1.1: A schematic of the ACF River Basin, Infrastructure, and Water Uses 
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(Basin Area: 19,600 square miles)

Water Uses: Water Supply (Municipal, Industrial, Agricultural), Hydropower (10 hydro plants), 
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George

3,910 sq. mi.
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Apalachicola

2,500 sq. mi.

Woodruff-Bainbridge
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Albany

2,390 sq. mi.

Buford

1,040 sq. mi.
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Figure 1.2: Integrated Modeling Framework 
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Chapter 2 

ACF River System: Historical Climate, Hydrology, and Water Uses 

2.1  ACF River Basin  

The Apalachicola-Chattahoochee-Flint (ACF) river system (Figure 2.1) is located in the 

southeast US.  The ACF begins from north Georgia and flows into the Gulf of Mexico, near 

Apalachicola, Florida. The total ACF drainage area is 19,600 square miles.   

The Chattahoochee River originates in the Blue Ridge Mountains of the Appalachian 

Highlands in northeast Georgia, and flows southwesterly for 120 miles and then southerly along 

the Georgia - Alabama border for another 200 miles.  The Chattahoochee drainage basin is 8,770 

square miles.  The Flint originates south of Atlanta and flows in a southerly direction toward the 

Coastal Plain where it joins the Chattahoochee River at Lake Seminole.  The Flint River drainage 

basin is 8,460 square miles. The releases from Lake Seminole enter the Apalachicola River 

which lies in the Coastal Plain over its entire length of 108 miles and flows south across 

northwest Florida to the Apalachicola Bay.  The Apalachicola River drainage basin is 2,370 

square miles.  

The Chattahoochee flows are highly regulated by a series of federal and private reservoirs. 

The federal reservoirs operate for multiple purposes, including flood control, water supply, 

hydropower, navigation, water quality, recreation, and aquatic life protection, while the private 

reservoirs are power facilities. The Flint and Apalachicola Rivers are largely unregulated.  

Based on the locations of major storage projects and the geography of the basin, this 

study distinguishes eight sub-basins: (1) the Chattahoochee headwater reach extending up to and 

including Lake Lanier and Buford Dam; (2) the Chattahoochee reach from Lake Lanier up to and 

including West Point Lake and Dam; (3) the Middle Chattahoochee reach from West Point up to 
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and including Lake Walter F. George and Dam; (4) the Lower Chattahoochee reach from Lake 

W.F. George up to and including Lake Seminole and Jim Woodruff Lock and Dam; (5) the Flint 

headwater reach up to Montezuma; (6) the Flint reach from Montezuma up to Albany; (7) the 

Flint reach from Albany to Bainbridge; and (8) the Apalachicola River reach.  Table 2.1 

summarizes general characteristics of the ACF sub-basins.  

Table 2.1: General Characteristics of the ACF Sub-basins 

ACF Sub-
basins 

Latitude 
(Centroid) 

Longitude 
(Centroid)

Area 
(km2) 

Mean 
Elevation 

(m) 

Min. 
Elevation 

(m) 

Max. 
Elevation 

(m) 
Buford 34o31’ -83o48’ 2694 454 320 1250 

West Point 33o40’ -84o44’ 5189 270 137 455 

George 32o20’ -85o01’ 4787 143 46 396 

Woodruff 31o13’ -84o58’ 2141 64 22 167 

Montezuma 32o55’ -84o24’ 4507 213 85 394 

Albany 32o01’ -84o11’ 2605 115 53 235 

Bainbridge 31o25’ -84o24’ 1875 72 23 173 

Apalachicola 30o21’ -85o08’ 2121 59 1 128 
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Figure 2.1: The Apalachicola-Chattahoochee-Flint (ACF) River System 
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2.2  Historical Climate and Hydrology 

The ACF river basin has a warm, humid, and temperate climate, typical of the subtropics, with 

mild winters and hot summers. The Atlantic Ocean on the east coast of Georgia and the 

mountain region to the north impact the state climate, including the ACF basin. The basin 

experiences all four seasons, with monthly temperature varying from 39oF (4oC) in the winter to 

76oF (25oC) in the summer. The average annual precipitation over Georgia is 50 inches (1,250 

mm).  Spatially, annual precipitation varies from 45 inches (1,100 mm) in central Georgia to 

approximately 75 inches (1,900 mm) in the northeast corner of the state.  

Water in Georgia originates mainly as rainfall and occasionally as snow or sleet. Over the 

long term, approximately 70 percent of Georgia’s precipitation becomes evapotranspiration (ET), 

while the remaining 30 percent becomes runoff and streamflow. These percentages vary 

seasonally and by watershed location, with ET being higher during summer and at lower 

latitudes.  

Geological conditions play a key role in shaping watershed soil type, hydrology, and 

stream morphology. The rivers and streams emanating from the Blue Ridge Mountains of north 

Georgia (upper Chattahoochee River) are generally steep, fast-flowing, cold, and clear. In the 

Piedmont (middle Chattahoochee and upper Flint Rivers), rivers are slower because of the flatter, 

rolling topography. Rivers and streams below the fall line (Apalachicola and lower 

Chattahoochee and Flint Rivers) exhibit varying degrees of aquifer interactions. Lime sinks, 

sinkholes, and springs are common in this part of the ACF basin.  

2.2.1 Precipitation 

The mechanisms of Georgia’s precipitation vary from season to season. Frontal storms are 

common during winter, spring, and fall, while convective storms dominate during summer. 
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Hurricane-induced tropical storms are also common during the hurricane season from June to 

November. Strong El Niño years tend to be wetter than normal, while La Niña years are drier. 

Overall, annual precipitation varies by as much as 40 percent of the long term mean.  

The left and middle plots in Figure 2.2 show the seasonal (DJF, MAM, JJA, and SON) 

precipitation climatology over Georgia and the ACF basin, based on historical data from 01/1950 

to 12/1999. The figures show that the northeastern ACF region (Blue Ridge) receives much more 

precipitation than the rest of the basin, except during summer and fall when southern 

Apalachicola in Florida is impacted by tropical cyclones and summer thunderstorms. The Blue 

Ridge Mountains have the most frequent snowfall in Georgia, although snowfall is less than 

other regions of the Appalachian Mountains. 

The right plot in Figure 2.2 shows the monthly precipitation climatology by sub-basin.  

The figure shows that all basins exhibit a similar monthly precipitation pattern with highs in 

March and July and lows in October. The July high and October low become more pronounced 

for watersheds in lower latitudes. The Buford watershed, extending in the Blue Ridge Mountains, 

receives the highest precipitation amounts in all months.  

Figure 2.3 shows the historical monthly average precipitation sequences from 1901 to 

2002 for all ACF watersheds.  The corresponding two-year moving average sequences are also 

plotted in the same figures.  Historically, severe droughts occur with an average frequency of 8-

12 years and last for 2 - 5 years.  
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Figure 2.3: Monthly Precipitation Sequences for the ACF Sub-basins: Buford, West Point, 

George, Woodruff, Montezuma, Albany, and Bainbridge (from top to bottom). 
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2.2.2 Temperature and Potential Evapotranspiration (PET) 

ACF temperature exhibits temporal and spatial variations due to regional geographic and 

climatic features. Figure 2.4 shows the ACF seasonal temperature climatology (DJF, MAM, JJA, 

and SON) based on the historical data from 01/1950 to 12/1999.  Seasonal average temperature 

variations of 3 to 6 degrees are observed from north to south, with the northeastern region being 

colder due to the orography. The right plot in Figure 2.4 shows the monthly temperature 

climatology of the eight ACF sub-basins.  All sub-basins exhibit similar patterns.  The hottest 

months are July and August with temperatures varying from 22oC to 28oC, while the two coldest 

months are December and January with temperatures varying from 4oC to 10oC.  

The historical monthly temperature sequences from 1901 to 2009 and the corresponding 

two-year moving average sequences for all sub-basins are shown in Figure 2.5.  No significant 

long term trends are observed.  

Potential evapotranspiration demand (PET) is the amount of water that could be 

evaporated from open water surfaces and transpired by vegetation assuming unlimited water 

supply. PET measures the ability of the lower atmosphere to transport moisture away from the 

land surface. For short temporal scales, PET is highly variable, with highest rates occurring on 

warm, dry, and windy days, and lowest rates on cold, wet, and calm days.  However, PET is 

considerably less variable for longer time scales (e.g., months).    

Many methods exist for estimating PET, based on different assumptions, requirements, 

and regional climate specifications (Grismer, 2002).  PET calculation techniques include 

temperature based methods (Thornthwaite , 1948, Hamon, 1963, and Hargreaves-Samani, 1985),   
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Figure 2.5:  Monthly Temperature Sequences for the ACF Sub-basins: (From Top to Bottom) 
Buford, West Point, George, Woodruff, Montezuma, Albany, Bainbridge, and Apalachicola 
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Figure 2.6: Monthly PET Sequences (Hamon) for ACF Sub-basins: Buford, West Point, George, 
Woodruff, Montezuma, Albany, Bainbridge, and Apalachicola (from top to bottom). 
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Radiation-based methods (Turc 1961, Makkink, 1957, and Priestley-Taylor, 1972), and 

combination methods (Penman, 1948).   In a comparative investigation of several monthly PET 

methods, Lu (2005) concluded that the Priestley-Taylor, Turc, and Hamon methods are suitable 

for watershed-scale applications in the southeastern United States.  

This study also carried out a comparison of three methods: Hamon, 1963, Priestley-

Taylor, 1972, and the PET estimates of the NCEP Regional Climate Model (Juang et al, 1997). 

All methods are based on grid data obtained from the NCEP Re-analysis Dataset I (Kalnay et al., 

1996). The NCEP/NCAR Reanalysis 1 project is using a state-of-the-art analysis/forecast system 

to perform data assimilation using data from 1948 to the present.  It has 4-time daily, daily, and 

monthly reanalysis data on a global grid (~50km horizontal) including 17 pressure levels and 28 

sigma levels. In addition, the methods use data on air temperature at 2 meters, net longwave 

radiation, and net shortwave radiation. The grid data are spatially aggregated into four sub-basins:  

Buford, West Point, George, and Woodruff.   

The formulas used in the PET calculation are included below. 

 Hamon Method: 

  KPECRHOSATLdPET 1651.0      (2.1) 

PET: daily PET (mm/day); 

Ld: daytime length (i.e., time from sunrise to sunset in multiples of 12 hours); 

RHOSAT: saturated vapor density (g/m3) at the daily mean air temperature (T); 

   3.273/7.216  TESATRHOSAT      (2.2) 

    3.237/26939.17exp108.6  TTESAT      (2.3) 

T: daily mean air temperature (oC); 

ESAT: saturated vapor pressure (mb) at the given T; 
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KPEC: calibration coefficient, set to 1.2 in this study; 

Thus, the only input data needed for the Hamon method is “Air Temperature at 2 meters”. 

 Priestley-Taylor (1972) Method: 

   GRPET n 





      (2.4a) 

  T002361.0501.2       (2.4b) 

    000116.08072.000738.0200.0 7  T      (2.4c) 

PET: daily PET (mm/day); 

λ: is the latent heat of vaporization (MJ/kg); 

T: is the daily mean air temperature (oC); 

α: calibration constant, set to 1.26 is this study; 

Δ: slope of the saturation vapor pressure temperature curve; 

γ: psychrometric constant modified by the ration of canopy resistance to atmospheric 

  resistance (kPa/oC); 

  



622.0

pcp      (2.5) 

  01055.03.101 p      (2.6) 

cp: constant pressure (kJ/kg/oC), which is 1.013 kJ/kg/oC; 

p: atmospheric pressure (kPa), where EL is the elevation (m); 

Rn: net radiation (long wave radiation plus short wave radiation, MJ/m2/day); 

G: heat flux density to the ground (MJ/m2/day); 

The input datasets needed for Priestley-Taylor method is “Air Temperature at 2 meters”,  

“Net longwave radiation”, and “Net shortwave radiation”. 
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 NCEP Re-analysis: 

The NCEP re-analysis dataset also provides the potential evaporation rate for each cell in the 

grid. This rate is obtained by the NCEP regional models. The NCEP evaporation rate is 

expressed in energy flux units, W/m2, and unit conversion is needed to make it comparable to the 

other two methods. Namely,  

  PRTPET 0864.0      (2.7) 

where PRT is the energy flux obtained from the NCEP re-analysis, and λ is the latent heat of 

vaporization (MJ/kg) defined above. 

The above three methods were applied to the four sub-basins of the Chattahoochee River. 

The Hamon and Priestly-Taylor method results are highly correlated (Table 2.2).  The generated 

monthly PET sequences for the seven watersheds from 1901 to 2009 using the Hamon method 

are shown in Figure 2.6.  The Hammon method is selected for use in this study due to (1) its 

generally reliable performance and (2) the applicability in future climate assessments.  PET 

values are lowest in the basin headwaters, gradually increasing at the downstream watersheds 

near the warmer Gulf coast.  Actual evapotranspiration (ET) depends on several other factors 

such as soil type, vegetation cover, and land use, among others, and will be estimated by the 

hydrologic models to be discussed later in this report.   

Table 2.2:  Correlation Coefficients 

 Hamon-PT Hamon-NCEP PT-NCEP 

Buford 0.84 0.69 0.85 

West Point 0.84 0.62 0.82 

George 0.82 0.56 0.79 

Woodruff 0.79 0.67 0.63 
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2.2.3 Unimpaired Inflow and Watershed Runoff 

Unimpaired flows are the river flows that would have been observed in the absence of human 

water use and regulation. The unimpaired flow sequences used in this study were initially 

developed by the U.S. Army Corps of Engineers (USACE) as part of the ACF Comprehensive 

Study for the period from 1939 to 1993. This dataset was extended to 2001 by USACE Mobile 

District in September 2003. A further extension to 2007 was carried out recently by the Georgia 

EPD as part of the Georgia Water Plan.   Figure 2.7 shows the incremental unimpaired flows for 

each ACF watershed.  (This data is used for the calibration of the hydrologic watershed models 

to be discussed at a later section.) The monthly unimpaired flows for all ACF watersheds, except 

Woodruff, exhibit mild decreasing trends during the abovementioned periods. Woodruff’s 

calculated unimpaired flow data, provided by USACE, increase about 53% on average after 1963, 

which suggests that there are significant errors in flow data of Woodruff watershed.  

Watershed runoff is influenced by several factors (including catchment size, location, 

slope, soil type, vegetation, land use, and time scale). Runoff coefficient is defined as the 

percentage of precipitation that appears as runoff over a certain time period. Figure 2.8 shows 

12-month moving average  runoff coefficient sequences and their linear trends. Except for 

Woodruff, all watersheds show decreasing trends over the observed periods from 1939 to 2003. 

Figure 2.9 shows the long term runoff coefficient for each ACF sub-basin, computed by dividing 

the average incremental unimpaired flow values by the corresponding average precipitation. The 

figure shows that the runoff coefficient decreases from north to south. However, for Woodruff 

and Apalachicola, the runoff coefficients are abnormally high compared to the other watersheds. 

These are mainly due to groundwater recharge in this region.  
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Figure 2.7: Monthly Flow Sequences for ACF Sub-basins: Buford, West Point, W.F. George, 
Woodruff, Montezuma, Albany, and Bainbridge (from top to bottom). 
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Figure 2.8: Monthly Runoff Coefficients for ACF Sub-basins: (From top to bottom) Buford, 
West Point, George, Woodruff, Montezuma, Albany, Bainbridge, and Apalachicola. 
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Figure 2.9: Average Runoff Coefficient by ACF Sub-basin. 

 

2.2.4  Groundwater 

Groundwater is a substantial water resource especially for southern Georgia, where the 

agriculture irrigations rely heavily on groundwater storages. The fall line runs across Georgia 

and ACF basin northeastward from Columbus to Augusta. It separates Upper Coastal Plain 

sedimentary rocks to the south from Piedmont crystalline rocks to the north. This leads to a clear 

separation of groundwater systems between north and south part of Georgia. 
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Figure 2.10: Principal Aquifers, Areas of Use, and Physiographic Provinces 

 

Groundwater storage in the Blue Ridge and Piedmont regions is limited by shallow depth to 

bedrock and limited porosity in the bedrock. Most groundwater is stored in the saprolite and 

takes only a few months on average to reach the nearest stream. In the Coastal Plain, 

groundwater is more readily available because the bedrock can store more water. 

 The Upper Floridan Aquifers underline most  of south Georgia. In most places, the Upper 

Floridan Aquifer is confined by clay layers and it is shallow and productive. In the lower 

Flint River basin in  south Georgia, the aquifer is  semiconfined, and it is primarily used for 

agricultural pumping.  

 The Claiborne and Cretaceous Aquifers in south Georgia consist of sands and gravels 

deposited on ancient beaches and are not as productive as the Upper Floridan Aquifers.  

 The Valley and Ridge (Paleozoic Rock) Aquifers consist of limestones underlying the valleys. 

These aquifers are  generally very productive. 
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 The Piedmont and Blue Ridge Aquifers are crystalline rock aquifers and they consist of 

bedrock overlain by unconsolidated material called regolith. Groundwater can be obtained 

from either regolith or fractures in the rock, with high yield. 

The interaction between the surface and the groundwater in the basin is incorporated in the 

hydrologic model presented in Chapter 4.  

2.3 Land Uses, Water Uses, and Challenges 

2.3.1 Land Cover and Use 

The land cover and land use of the ACF watersheds is constantly being modified due to the 

rapidly increasing population and economy.  

The Georgia Land Use Trends (GLUT) project, completed by the Natural Resources 

Spatial Analysis Laboratory, University of Georgia, provides higher resolution historical land 

cover maps for Georgia (Kramer, Conroy, et al., 2004).  The maps were produced from Landsat 

TM imagery with a spatial resolution of 30x20m. The  following land cover types are 

distinguished for 1974, 1985, 1991 and 2005: 

 Beaches/Dunes/Mud 

 Quarries/Strip Mines/Rock Outcrops 

 Open Water 

 Low Intensity Urban 

 High Intensity Urban 

 Clearcut/Sparse 

 Deciduous Forest 

 Evergreen Forest 

 Mixed Forest 
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 Row Crops/Pasture 

 Forested Wetland (salt water) 

 Frorested Wetland (freshwater) 

 Non-forested Wetland 

Table 2.3 shows the percentages of the above land use types aggregated into seven ACF sub-

basins within the state of Georgia. The high and low intensity urban percentages increase from 

1974 consistently for all sub-basins and almost doubled from 1991 to 2005. At the same time, the 

forest and wetland percentages have decreased. The percentage of clear cut area also shows an 

increasing trend for most sub-basins, with the headwater sub-basins (Buford, West Point, and 

Montezuma) changing the most.  

Table 2.3: Land Use Percentages for the ACF Sub-basins for 1974, 1985, 1991 and 2005 
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2.3.2  Water Uses  

The principle ACF water uses include:  

 Irrigation: Irrigation is a major use in the southern ACF watersheds and is estimated at 

533.28 million gallons per day (mgd) from May to October, and 70.32 mgd from November to 

April.  

Municipal and Industrial Water Supply: Municipal and industrial uses approximately require 

294.82 mgd from May to October, and 194.31 mgd from November to April.  Most of the 

municipal water use takes place in the upper Chattahoochee basin.   

Thermoelectric:  The ACF river basin houses six fossil fuel and one nuclear plants. The 

average cooling water requirements for these plants amount to 129.63 mgd from May to October 

and 98.73 mgd from November to April. Most of these withdrawals return to the river.   

Navigation: The ACF River System is navigable from the mouth of the Apalachicola in 

Florida up to Columbus, Georgia, and is used for the transportation of construction materials.  

The economic significance of this activity is gradually waning, but it continues to require the 

maintenance of navigation drafts (and sustained reservoir releases) for certain weeks in late 

summer.  Channel and port navigability is facilitated by annual dredging operations (U.S. Army 

Corps of Engineers—USACE). 

Hydropower:  The ACF river basin includes four federal and five private hydropower 

facilities. The energy and power from the federal projects (with a total installed capacity of 368.7 

MW) is marketed to cooperatives and municipalities by the South East Power Administration 

(SEPA) as dependable capacity and primary energy.  The private facilities are owned and 

operated by Southern Services and have 276.1 MW total installed capacity.     
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River and Estuary Ecology:  The basin sustains rich ecosystems, the most important of which 

is the ecosystem of the Apalachicola Bay.  This ecosystem presently supports 131 freshwater and 

estuarine fish species and serves as a nursery for many significant Gulf of Mexico species (e.g., 

the Gulf sturgeon, oysters, etc.).  River and estuary ecology depend on historical hydrological 

conditions under which they have evolved.  Such conditions include magnitude, variability, 

frequency, and persistence of floods, droughts, and normal periods. The biological productivity 

of the bay is strongly influenced by the amount, timing, and duration of the freshwater inflow. 

The Apalachicola River provides the essential nutrients that form the base for the food web in the 

Bay. Any alteration of flow in the watershed disrupts the nutrient inputs of the ecosystem. 

Extreme hydrologic activity associated with hurricanes (e.g., hurricane Elena in 1985) also has 

severe effects on oyster reefs in the Apalachicola Bay. However, developing a comprehensive 

understanding of the linkages between river hydrology, estuarine salinity, and fish ecology is an 

on-going effort. Such understanding is critical for the development of a sound instream flow 

policy for ecosystem protection and sustainability.  As an interim policy in Georgia, the monthly 

7Q10 flow statistic (representing the minimum seven day average flow with a return period of 10 

years) is used as a minimum instream flow requirement.  At the Chattahoochee gage in Florida, 

the minimum monthly 7Q10 statistic occurs in October and amounts to 5,000 cfs. 

Recreation:  The ACF lakes are major recreation sites generating significant economic 

benefits for the local economy.  According to USACE, in 2003 Lake Lanier registered 7,666,160 

visitor days for a total economic benefit of 146.59 million dollars. In the same year, Lake West 

Point registered 2,264,600 visitor days and 37.47 million dollars. Apalachicola Bay is a major 

eco-tourism attraction in Florida. Florida’s tourism is valued at $73 billion per year. 
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 The percent return of the surface water withdrawals varies by water use, with thermoelectric 

withdrawals returning more than 90% and irrigation less than 10%.  The ACF groundwater 

aquifers are primarily pumped for irrigation but also for domestic and industrial water supply 

(e.g., pulp and paper industries in the lower ACF). Groundwater provides approximately 62% of 

the region’s irrigation water. 

2.3.3 Water Resources Management Challenges 

Despite its many environmental and economic benefits, the ACF river basin faces serious water 

resources challenges:  

Rapid population and demand growth: Georgia’s population is 8.5 million people and 

growing at nearly 25% (or 1.5-2 million people) every 10 years. The most rapid population 

growth occurs in Atlanta and surrounding districts where more than five million Georgians 

currently reside. Atlanta’s average water demand (now approximately 0.8 bgd) rises by 0.2 – 

0.25 bgd per decade, while its water supply depends on a single source: the 1,040 square mile 

Lake Lanier watershed, with the distinction of being the smallest watershed supplying a major 

US metropolitan area.  Current water supplies are estimated at 0.933 bgd and are expected to last 

until 2020. The urgency of this fast approaching date is anxiously felt in the Atlanta Metro Area 

and at the Georgia Governor’s Office. Among the water augmentation strategies being 

considered are water conservation, reclamation, inter-basin transfer, and construction of new 

reservoirs, but none has emerged as a long term viable solution. Nearly half of Atlanta’s water 

withdrawals return to the Chattahoochee River through a combined sewage system.  However, 

return flow carries various pollutants, in spite of the applied treatment.  Impaired water quality 

remains a serious concern for the downstream City of LaGrange, West Point Lake, and other 

water users to the south.  
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Agricultural and Irrigation Expansion:  Georgia and the southeast US experienced a very 

rapid growth in irrigated acreage from the mid seventies through the early eighties. This 

expansion occurred primarily in the south where approximately 1.5 million acres are currently 

under irrigation.  Agriculture is a key component of the region’s economy, with top ranked 

national production in peanuts, cotton, corn, soybeans, and nursery products. However, irrigation 

is stressing surface and groundwater resources. The impacts are particularly intense during 

droughts when irrigation quadruples relative to a normal year.        

Climate Variability and Droughts: Severe droughts occur in Georgia and the southeast US 

every 8 to 12 years and last for 2 to 4 years. Most notable recent droughts took place in 1980-

1981, 1986-1988, 1998-2002, and 2007-2009, with devastating economic consequences for 

several industries. Severe droughts reduce natural inflow (and water supplies) by as much as 50% 

of normal.  Thus, while on average, Georgia’s water resources are abundant, water demands in 

several regions have become unsustainable during droughts.   

Climate Change: Climate change is only beginning to draw the attention of planning and 

management agencies. Mitigation strategies and adaptive management are not currently 

considered.  

Legal and Institutional Shortcomings: These mainly fall under the following categories:   

 Conflicts between federal laws (e.g., Endangered Species Act) and state priorities;  

 Lack of coordination among state and federal agencies;  

 Failure to agree on an ACF water sharing compact among Alabama, Florida, and Georgia, 

despite more than two-decades of negotiations;   

 Outdated federal project authorizations and water control procedures; and   

 Ineffective stakeholder participation in planning and management processes.   
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Chapter 3 

Downscaling Procedures and Climate Assessments 

3.1  IPCC Climate Scenarios 

The Intergovernmental Panel on Climate Change (IPCC) was set up jointly by the World 

Meteorological Organization and the United Nations Environment Program to promote the 

scientific understanding of climate change causes and impacts (IPCC, 2007). To date, IPCC has 

produced four assessment reports (in 1990, 1995, 2001 and 2007) which are referenced widely 

by scientists in a wide range of disciplines. 

The IPCC reports are based on the results and findings of many climate research 

programs and experiments.  One such program is the World Climate Research Program (WCRP) 

Coupled Model Intercomparison Project Phase Three (CMIP3), carried out under the Program 

for Climate Model Diagnosis and Intercomparison (PCMDI). This program produced an array of 

climate change computational experiments under past, projected, or idealized CO2 emission 

scenarios, three of which are used in this study (Table 3.1).  

The first experiment, 20CM3, represents the 20th century historical emission scenarios, 

and serves as a baseline case illustrating the way in which climate models simulate the historical 

climate. The other two experiments pertain to projected climate changes in the 21st century and 

are a subset of the IPCC Special Report on Emission Scenarios (SRES; Nakićenović and Swart, 

2000). These experiments are the SRESA1B and SRESA2, respectively based on medium and 

high emission scenarios, as described below (Nakicenovic and Swart, 2000): 

“The A1 storyline and scenario family describes a future world of very rapid economic 

growth, global population that peaks in mid-century and declines thereafter, and the rapid 

introduction of new and more efficient technologies. Major underlying themes are convergence 
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among regions, capacity building, and increased cultural and social interactions, with a 

substantial reduction in regional differences in per capita income. A1B scenarios represent a 

balance across all energy sources. 

The A2 storyline and scenario family describes a very heterogeneous world. The underlying 

theme is self-reliance and preservation of local identities. Fertility patterns across regions 

converge very slowly, which results in continuously increasing global population. Economic 

development is primarily regionally oriented and per capita economic growth and technological 

changes are more fragmented and slower than in other storylines.” 

Table 3.1:  PCMDI Experiments used in this study 

Experiment 
Name 

Monthly 
Data 

 Features  

20C3M 
Experiment 
(climate of the 
20th Century) 

~1850 – 
present 

Baseline run (historical emissions).  

SRES A2 
Experiment 

present – 
2100 

Use the end of the 20C3M run as its initial condition. 

SRES A1B 
Experiment  
(720 ppm 
stabilization) 

present – 
2200 or 
present–   
(2300) 

Impose SRES A1B conditions, initialize with conditions from the end of 
the 20C3M simulation, and run to 2100.  After 2100, hold concentrations 
fixed and continue the simulation to 2200.  Extend one member of the 
ensemble for an additional 100 years (to 2300), continuing to hold 
concentrations fixed. 

 

General circulation models (GCMs) are scientific tools used to assess the future global 

climate response associated with various greenhouse gas emission scenarios (IPCC WGI, 2007). 

The GCMs represent (through a large system of partial differential equations) the coupled 

atmospheric and oceanic processes currently understood to govern the Earth’s climate. Climate 

scenarios are generated by the numerical integration of the underlying equations over space and 

time.  Table 3.2 lists 13 different GCMs, selected scenarios from which (corresponding to 

emission scenarios 20CM3, SRESA2, and SRESA1B) are utilized in this study. In this table, 
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under atmospheric resolution, T is the horizontal resolution and L is the vertical resolution in 

numbers of vertical layers. Oceanic resolution is provided in degrees (horizontal resolution) and 

numbers of vertical layers (L: vertical resolution).  The latter is not reported for all models.   

Table 3.2: Summary of GCMs used in this study  
 

Model Contributor Atm. Resolution Ocean Resolution 

BCCR-BCM2.0, 
Norway 

Bjerknes Centre for Climate 
Research 

T63L31 1.5 o x1.5 o, L31 

CGCM3.1(T63), 
Canada 

Canadian Centre for Climate 
Modeling and Analysis 

T63L31 1.4 o x0.9 o, L29 

CNRM-CM3, France 
Centre National de Recherches 

Meteorologiques 
T63L45 2.0 o x1.2 o 

CSIRO-Mk3.5, 
Australia 

CSIRO, Australia T63L18 1.875o x0.84o 

ECHAM5/MPI-OM, 
Germany 

Max Planck Institute for 
Meteorology 

T63L31 1.5 o x1.5 o, L40 

GFDL-CM2.1, USA 
Geophysical Fluid Dynamics 

Laboratory, NOAA 
2.5ox2.5o 1o x1o 

GISS-AOM, USA 
NASA Goddard Institute for 

Space Studies 
4o x3o, 12L 4o x3o, L16 

MIROC3.2(hires), 
Japan 

CCSR/NIES/FRCGC, Japan T105L56 0.28o x0.19o, L47 

CCSM3, USA 
National Center for Atmospheric 

Research (NCAR), 
T85L26 

1.125 o x(0.27o -
1.0o) , L40 

PCM, USA 
NCAR, NSF, DOE, NASA, 

NOAA 
T42L26 1.125o x0.469o , L40 

UKMO-HadCM3, UK 
Hadley Centre for Climate 
Prediction and Research 

2.75o x2.75o 1.25o x1.25o 

MIUB ECHO-G, 
Germany/Korea 

Meteorological Institute of the 
University of Bonn 

T30L19 T42 

INM-CM3.0, Russia 
Institute for Numerical 

Mathematics 
N.A. N.A. 

 

3.2 Historical and GCM Data Sources 

Historical climatic data are used to assess and adjust GCM outputs, to establish regional spatial 

relationships, and to calibrate hydrologic models. The historical data are derived from three 
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observational climatic datasets: (1) CRU TS2.0 monthly dataset with resolution of 1/2 degree 

from 1901 to 2002 (Mitchell et al., 2005; http://www.cru.uea.ac.uk/cru/data/); (2) monthly and 

daily gridded meteorological data at 1/8 degree spatial resolution from 1950 to 1999 (Maurer et 

al., 2002; http://www.engr.scu.edu/~emaurer/data.shtml); and (3) PRISM monthly dataset at 4km 

spatial resolution from 1901 to 2009 (Daly, 1994; http://www.prism.oregonstate.edu/).  

Monthly temperature and precipitation data of all GCM models were downloaded from 

the Earth System Grid (http://www.earthsystemgrid.org/). The Earth System Grid (ESG) acts as 

a data distribution center for large scale data and analysis results, including IPCC experiment 

outputs. 

In general, GCMs were designed to run on global scales (Figure 3.1, blue lines) at 

relatively low spatial resolutions (~100x100 km2 to ~250x250 km2).  However, the observational 

grids usually have much higher spatial resolution. A comparison of GCM and observational data 

resolutions is shown in Figure 3.1, where the CGCM3.1 (Canadian Centre for Climate Modeling 

and Analysis) grid is superimposed on the observational data grid over the southeastern US.   
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Figure 3.1: Spatial Resolutions of the Canadian GCM3.1 (blue) and Observational Data Sets 
(OBS—black) over the Southeastern US 

 

Because of their coarse spatial resolution, GCM outputs are usually inadequate to capture 

the spatial variability at regional or local scales necessary for hydrological applications. Xu 

(1999) shows that predicting runoff directly from GCM outputs is over-simplified and ignores 

the lateral transfer of water between grid cells within the land phase. This conclusion is 

corroborated by the large uncertainties arising from using different models driven by the same 

scenarios (Tebaldi, 2005; Mitchell and Hulme, 1999; Mujumdar and Ghosh, 2008).  The purpose 

of downscaling procedures to be discussed next is to construct climate scenarios at more 

application-relevant spatial (and temporal) scales.     

3.3 Downscaling Methods 

3.3.1 Literature Review 

Downscaling methods can be distinguished in two main categories: (1) dynamic downscaling 

and (2) statistical downscaling methods. Fowler and Blenkinsop (2007), Wilby and Wigley 

(1997), and Xu (1999) provide thorough reviews on many existing downscaling methods. 

In dynamic downscaling, a regional climate model (RCM) is used to model the target 

region at finer scales bounded by larger GCM nodes (Miller et al., 1999; Xue et al., 2007). The 

results of RCMs still depend on the validity and skill of the overriding GCM.  Mearns et al. 

(2003a) outlined the advantages and disadvantages of using RCMs and provided guidance on the 

use of their outputs.  Generally, RCMs provide high resolution climatic fields spatially and 

globally consistent with GCM scenarios. However, these results inherit the biases of the driving 

global models and are computationally expensive.   
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The North American Regional Climate Change Assessment Program (NARCCAP) is 

among the most notable dynamic downscaling research efforts and provides valuable  online 

datasets (http://www.narccap.ucar.edu/) This program investigates the uncertainties of regional 

scale projections of GCM outputs, and generates high resolution scenarios for regional climate 

impact assessments. Although NARCCAP provides a very important source of dynamically 

downscaled regional climatic scenarios, there are only a few simulations available to date. These 

simulations correspond only to SRES A2 emissions scenario and are generated for selected time 

horizons (1971-2000; 2041-2070) due to their heavy computational requirements. Regarding the 

latter, it takes approximately 36 hours to complete a 30-day simulation using a RCM (e.g., MM5 

or WRF) over an area of 90,000 km2 with 30 x 30 km spatial resolution on a 2.1GHz dual core  

personal computer.  Thus, the currently available results are not sufficient for comprehensive 

climate change impact assessments, but are used in this study to compare the skill of statistical 

versus dynamic downscaling methods.  Lastly, it is unclear whether the uncertainties surrounding 

dynamic downscaling methods are not comparable to those of the more computationally efficient 

statistical downscaling methods.  

Statistical downscaling does not depend on GCM boundary conditions and can be used to 

downscale climatic variables without the full set of climatic fields at the coarse level. Statistical 

downscaling is based on relationships between low resolution GCM outputs and associated 

higher resolution observations over the same historical period. These statistical relationships are 

then used to infer the observations on finer grids at future times when only GCM outputs are 

available. Examples of statistical downscaling methods include changing factor methods 

(Beniston et al., 2003), regression methods (Huth, 1999), weather typing schemes (Vrac, 2007), 
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weather generators (Wilks and Wilby, 1999), bias correction and spatial disaggregation (BCSD; 

Wood et al., 2004), and constructed analogues (CA, Hidalgo et al., 2008; van den Dool, 1994).  

Wood et al. (2004) proposed a two-step statistical downscaling method to address bias 

correction and spatial disaggregation (BCSD). In the first step, GCM biases are adjusted through 

a quantile mapping technique individually for temperature and precipitation. The spatial 

disaggregation step translates adjusted GCM data on climate model resolutions to a basin-

relevant resolution (observational resolution) by using interpolated spatial factors. The spatial 

interpolation method is a modified version of inverse-distance-squared interpolation developed 

by Shepard (1984). As will be seen, such interpolation tends to generate homogenous factor 

maps.    

BCSD is a very efficient statistical downscaling technique for climate change 

assessments. One BCSD disadvantage, however, is that it generates more homogenous 

downscaled fields than the observed fields. This results from the use of cell-by-cell spatial 

interpolation factors, and marginal, not joint, variable distributions in the quantile mapping 

process.  Furthermore, while the temperature shift-removing procedure enables the bias-

correction step without extrapolation, it also makes the assumption that future temperature 

distributions remain similar to those of the historical run. However, the extreme future 

temperature distributions (either high or low) are most likely to change outside the historical 

range.  

Hidalgo et al. (2008) proposed the constructed analogues (CA) technique. This method 

essentially makes no bias corrections, but rather relates model-simulated variables to observed 

variables, using relationships established during historical periods when observations are 

available. These relationships are established through multiple regression analysis. Maurer and 
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Hidalgo (2008) stated that the CA method may need a bias correction step before deriving the 

regression relationships.  Furthermore, long term observed historical climatic fields on higher 

resolution grids are required to build statistical relationships with GCM outputs. Such 

observations are not readily available.  

The performance of downscaling methods vary across seasons, stations, and indices 

(Fowler and Blenkinsop, 2007). Many researchers have concluded that the accuracy of statistical 

downscaling methods has a geographical and seasonal component (Huth, 1999).  

Overall, downscaled sequences must meet several criteria to be useful in regional water 

resources assessments:  

 First, the downscaled sequences should be consistent with historical observations.  

 Second, the downscaled sequences should capture climatic mean and variability trends.   

 Third, spatial and temporal correlations and interdependencies between the atmospheric 

fields that largely drive hydrological processes should be represented.  

 Lastly, to ensure that hydrological assessments at different temporal scales (e.g., annually, 

monthly, and daily) using the same downscaled products are consistent, the smoothness 

of these products across these time scales should be ensured. 

These criteria formed the guiding principles for a new statistical downscaling method 

discussed next.  

3.3.2  Joint Variable Spatial Downscaling (JVSD) Method 

JVSD aims to produce high resolution gridded hydrological datasets suitable for regional 

watershed modeling and assessments. The method is applicable to multiple atmospheric fields, 

but it is presented herein for the downscaling of GCM precipitation and temperature, as these 

two variables represent the principle atmospheric forcing that drives monthly watershed response.   
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JVSD conceptually follows the general approach introduced by Wood et al., 2004 (Bias 

Correction and Spatial Downscaling—BCSD), with several new features. First, instead of 

removing and replacing the variable long term trends before and after the bias correction step, 

JVSD uses a differencing process to create stationary time series and joint frequency 

distributions (for temperature and precipitation) between GCM control and future runs. Bias 

correction is then based on quantile-to-quantile mapping of these stationary frequency 

distributions.  The bias corrected sequences are recovered by inverting the differenced series. For 

spatial disaggregation, JVSD also uses the historical analogue approach.  However, historical 

analogues are identified simultaneously for all atmospheric fields being downscaled, and for all 

GCM cells that cover the assessment region. This feature ensures the temporal and spatial 

coherence of the downscaled climatic fields. Finally, a technique to expand the range of the 

historical analogues is implemented to handle future data values that fall outside the historical 

range.       

JVSD is implemented as shown in Figure 3.2 as a two step process: bias correction and 

spatial downscaling  
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Figure 3.2: Joint Variable Spatial Downscaling (JVSD) Method Flow Chart 
 

3.3.3 Bias Correction 

GCM outputs contain significant biases that must be corrected before any meaningful assessment 

can be carried out. Figure 3.3 compares the frequency distributions of GCM simulated 
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same ACF cell for the historical period 1950-1999.  Biases exist not only in the mean of these 

distributions but throughout the distributional range, and are uneven at different quantiles.       

 
Figure 3.3: Typical Frequency Curves of GCM Simulated and Observed Variables 

 

The JVSD bias correction process is presented using the following notation:  

 TS1 and TS2: Monthly precipitation and temperature time series of GCM future runs on 

individual GCM grids:  

  )NF,1,2,(t     _GCM          :1 montht PTS       

  )NF,1,2,(t     _GCM          :2 montht TTS       

 
where, monthNF  is the length of the monthly time series. 

 

 TS3 and TS4: Monthly precipitation and temperature time series of GCM control runs on 

individual GCM grids. GCM control runs correspond to a historical (control) time period, 

such as the entire 20th Century or some portion of it.  
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  )NC,1,2,(t     _CON          :3 montht PTS      

  )NC,1,2,(t     _CON          :4 montht TTS      

 
where monthNC  is the length of the monthly time series. 

 DTS5 and DTS6:  Daily observed precipitation and temperature time series on individual 

observational scale grids:  

  )NO,1,2,(td     _OBS          :5 daytd PDTS       

  )NO,1,2,(td     _OBS          :6 daytd TDTS       

 

where dayNO  is the length of the daily observed time series. 

Step 1: Upscaling 

DTS5 and DTS6 are aggregated into two new monthly sequences TS5 and TS6 over the GCM 

spatial resolution grids.  The aggregation process can be represented as shown below:  

    )NC,1,2,(t     _OBS_OBS    :5 monthttd
d
Pt

t  PPTS      (3.1a) 

            )NC,1,2,(t     _OBS_OBS    :6 monthttd
d
Pt

t  TTTS      (3.1b) 

where  

dt is the number of days in month t;  

P is the number of observational cells falling into a GCM cell; 

d
P  is the upscaling operator in space and time.   

The upscaling operator d
P  first performs spatial upscaling over each GCM cell and then 

performs temporal upscaling to monthly time scales.   The spatial upscaling operator,

 PiP AiTS  ; , corresponding to a GCM cell P which includes AP observational cells, is defined 

by:  
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   
 

P

TS

; PAi
i

 PiP AiTS      (3.2) 

 

Other spatial aggregation schemes such as spatial interpolation and kriging (Drignei, 

2009) may also be used in this step.  The concept of spatial upscaling of observational fields is 

illustrated in Figure 3.4.  

 
 
 

Figure 3.4: Schematic of Spatial Upscaling, From Observational Scale Grids (OBS) to GCM 
Scale Grids (GCM); Colored Area – Watersheds 

 

The temporal upscaling operator,  tTStd , for a month t with dt days is defined by:  

   
t

d

1
i

t d

TS
t


 id TSt      (3.3) 

 

Step 2: Differencing  

Differencing aims to remove seasonalities and deterministic trends, and create stationary time 

series. Differencing can be applied at various lags and orders.  For example, a 12-month 

differencing process applied to the monthly time series (TS1, TS2, TS3, TS4, TS5, and TS6) on 

each GCM cell can be expressed as shown below:  
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    )NF,1,2,(t     _GCM_GCMS          :1 montht12t
'  PPTS       

    )NF,1,2,(t     _GCM_GCMS          :2 montht12t
'  TTTS       

    )NC,1,2,(t     _CON_CONS          :3 montht12t
'  PPTS        

    )NC,1,2,(t     _CON_CONS          :4 montht12t
'  TTTS         

    )NC,1,2,(t     _OBS_OBSS          :5 montht12t
'  PPTS         

    )NC,1,2,(t     _OBS_OBSS          :6 montht12t
'  TTTS          

 
where the differencing operator D  with lag D is defined as  

    DtttD TSTSTS       (3.4) 

 
For D = 12 months, the operator simply subtracts the series values one year apart (Figure 3.5). If 

trends persist, higher order differencing may also be used.   

The effect of 12-month differencing of GCM temperature and precipitation outputs is 

shown on Figure 3.6.  The top plots of this figure show contour lines of the joint empirical 

temperature-precipitation frequency curve of the control (CON) and future runs (from the 

Canadian GCM—CGCM3.1/ run1).  Future runs are divided into the first 50-year period (FUT1) 

from 2000 to 2049, and the second 50-year period (FUT2) from 2050 to 2099.  Thus, all sample 

sizes (i.e., CON, FUT1, and FUT2) are 50-year long. The plots support the following 

observations:  

(1) The joint frequency distributions of temperature and precipitation are different in the 

control and future runs; and  

(2) The relationship of the joint frequency distributions (of control versus future data) is 

different in the first versus the second 50-year period, indicating that the joint 

frequency distribution is non-stationary.  
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These differences and nonstationarities bias the results of all existing downscaling methods that 

are commonly based on quantile-to-quantile mapping of these or the associated marginal 

statistics.      

 On the other hand, the bottom two plots of Figure 3.6 show the joint frequency 

distribution (of temperature and precipitation) after a 12-month differencing of the original 

sequences.  These plots clearly show that the differenced sequences exhibit very good 

correspondence between control and future runs, in both future periods.  Thus, the joint statistics 

of the 12-month differenced series are stationary and can serve as pivotal quantities for the 

quantile-to-quantile bias correction process. This result and conclusion holds for all 13 GCMs 

available through IPCC.  

 

Figure 3.5:  Example of Twelve-Month Differencing of the Original Time Series 
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Figure 3.6:  Bivariate Empirical Cumulative Distribution Frequency Curves for Original (Top) 
and Differenced (Bottom) Time Series of Temperature and Precipitation  
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Step 3:  Joint Frequency Mapping 

In keeping with the previous discussion, the bias correction process consists of (1) creating a 

differenced series of future temperature and precipitation; (2) finding the joint frequency of the 

contemporaneous differenced data values; (3) assuming that this joint frequency is the same in 

the future differenced series as it is in the control differenced series; and (4) mapping each joint 

frequency point of the GCM Control distribution to a corresponding point on the joint frequency 

distribution of the observed differenced series (OBS).  The last step is illustrated on Figure 3.7.  

The schematic shows two corresponding pairs of GCM and OBS joint iso-probability curves, and 

the nearest neighbor mapping of a GCM point to a point on the corresponding OBS iso-

probability contour.  The nearest neighbor is the one which minimizes the Euclidean distance 

between the GCM point and all points on the OBS frequency contour.       
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Figure 3.7: Joint Frequency Distribution Mapping 

 

Step 4:  Series Reconstruction 

The bias corrected monthly temperature and precipitation series for each GCM cell ( denoted 

TS7 and TS8) are obtained by inverting the differencing operation on the bias corrected series:  

      )NF,1,2,(t    C  C  _C_C  :7 monthD-ttt
1

t   SP_SP_SPPTS D     (3.5a) 

      )NF,1,2,(t     C  C  _C_C   :8 monthD-ttt
1

t   ST_ST_STTTS D     (3.5b) 
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3.3.4 Spatial Downscaling 

The JVSD spatial downscaling component is based on matching the bias-corrected temperature 

and precipitation patterns with similar observed patterns (historical analogues) over the 

assessment region (e.g., river basin). This process has the following distinguishing features 

compared to existing methods:  

(1) Pattern matching is performed simultaneously for temperature and precipitation fields;  

(2) Pattern matching is performed simultaneously for all GCM cells that cover the region of 

interest (e.g., river basin), thus maintaining the climatic coherence of the temperature and 

precipitation fields; 

(3) Future temperature and precipitation fields that fall outside the historical range are 

accommodated by expanding the range of historical analogues as described in the 

following section.     

The spatial downscaling procedure is summarized below. 

Step 5:  Data Range Adequacy Test 

In this step, the monthly temperature and precipitation values of the relevant GCM cells are 

checked to determine if they fall within the historical observed range of the monthly values.  If 

they fall within the historical range, the downscaling process continues to Step 7; otherwise, the 

process continues to Step 6.  

Step 6:  Historical Analogue Range Expansion 

This step is invoked when the future GCM patterns fall outside the historical range, a case 

particularly relevant to a changing climate.  To expand the historical analogue range, upscaling 

of the historical data in Step 4 is performed for several periods smaller than a month, e.g., d = 15, 

10, 5, or 1 days. Because these periods entail fewer days than those in a month, their averages are 
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expected to exhibit higher (than monthly) variability and a wider data range. This process aims to 

identify the largest interval d which generates historical analogues containing the future T and P 

values.  The data range expansion is carried out for the calendar month to be downscaled, but if 

this is not sufficient and further expansion is necessary, it includes 15 days from the previous and 

following months.          

The process is illustrated in Figure 3.8.  In the top plot, the maximum  and minimum 

historical monthly precipitation averaged over 30, 10, 5, and 1 days are plotted in solid lines, and 

the corresponding standard deviations in dashed lines. In the bottom plot, the same quantities are 

plotted for the historical temperature. These plots show the data range expansion as the 

averaging interval decreases.  



 3-21

 

Figure 3.8: Data Range Expansion Example 

 

Step 7:  Historical Analogue Matching  

Next, the nearest point  ii TOBSPOBS _,_  in the historical sequences TS5 and TS6 to a 

particular point  ii TGCMPGCM _,_  in the future GCM sequences TS7 and TS8 is determined 

by minimizing the Euclidean distance:  

     



Ai

iiii TGCMTOBSPGCMPOBS 222 ____R       (3.6) 
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where A is the set of cells that cover the region (basin) of interest; α  and β are weighting 

coefficients if one wishes to emphasize matching one of the variable over the other; and i is the 

cell index on the GCM grid. 

Once the nearest historical analogue point is identified, the T-P values can be spatially 

downscaled based on the historical T-P values over the observational cells.  The downscaled 

temperature and precipitation sequences are denoted TS9 and TS10:  
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where j is the cell index of the observational (high resolution) grid. 

Step 8:  Temporal Downscaling 

Daily (or other duration) temperature and precipitation sequences DTS9 and DTS10 can now be 

constructed by suitable temporal upscaling of the historical analogue fields.  If the nearest 

historical analogue was found from the monthly historical observed fields, then, the downscaled 

daily sequences are directly extracted from the corresponding month.  On the other hand, if the 

nearest historical analogue required expansion of the historical range (using the process outlined 

in Step 6), then, the downscaled daily sequences are constructed by assembling several nearest 

historical analogues the total duration of which equals one month.  

3.3.5 Comparisons and Assessments 

In this section, JVSD is first evaluated by comparison with observed historical data and other 

statistical and dynamic downscaling methods.  

3.3.5.1 Climatology Comparison 
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The climatology maps of precipitation and temperature in the ACF basin region are shown in 

Figures 3.9 to 3.16.  The results presented here are from the Canadian model CGCM3.1, run1. 

Results from all other GCMs are included in Appendix A.  Figures 3.9 through 3.12 show JVSD 

climatology results, and Figures 3.13 though 3.16 show BCSD climatology results.  Monthly 

precipitation and temperature data are aggregated by seasons (DJF, MAM, JJA, and SON) for 

three periods: (1) 01/1950 to 12/1999 using both observations as well as data from the CMIP 

pilot project called 20th Century Climate in Coupled Models (20CM3); (2) from 01/2000 to 

12/2049 for A1B scenarios, and (3) from 01/2050 to 12/2099 for A1B and A2 scenarios. The 

first column is constructed from observed, high resolution data from the 1/8 degree spatial 

resolution dataset (Maurer et al., 2002) for the period 1950-1999.  The second column shows 

results from JVSD using coarse resolution GCM data from the 20CM3 experiments (1950-1999) 

as input. The third (2000-2049) and fourth columns (2050-2099) are also generated by JVSD 

with input from the A1B or A2 GCM scenario results.    

A comparison of the first two columns in these figures shows that JVSD results compare 

favorably with observed high resolution data in that they reproduce fairly well the seasonal 

spatial temperature and precipitation distributions. Furthermore, the results in columns 3 and 4 

support the following comments:  

(1) Temperature exhibits increasing trends over the ACF basin for all seasons and all 

A1B and A2 scenarios; The A2 temperature increases are more significant in the 

2050 – 2099 time period and the northern part of the ACF Basin, e.g., the Buford 

watershed.  The most pronounced temperature increase is projected to happen in late 

spring and early summer (April to July);  
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(2) The most significant precipitation changes occur in the summer and fall in the north 

part of Georgia and the ACF basin, where precipitation experiences declining trends 

and higher spatial variability; There are no salient precipitation changes in the 

southern ACF watersheds, except in July when all ACF watersheds are expected to 

receive less precipitation in both A1B and A2 scenarios.    

Figures 3.13 through 3.16 show similar climatology results from the BCSD downscaling 

method.  As can be seen by the first two columns of these figures, BCSD generally performs 

well, showing similar overall trends for seasonal temperature and precipitation as those of the 

observed data and JVSD. However, the following differences are noted between the two methods:  

(1) The BCSD precipitation fields exhibit less spatial variability than those generated by 

JVSD.  The reasons for this difference have already been discussed. 

(2) BCSD predicts that the highest temperature increases will occur during late spring 

and early summer as does JVSD.  However, summer temperature increases (July and 

August) are higher under BCSD than under JVSD. 

(3) BCSD predicts milder precipitation changes than JVSD for all ACF watersheds. The 

most likely reason for this difference is that JVSD downscales simultaneously 

precipitation and temperature while BCSD operates on the individual variables. 

Temperature and precipitation climatologies for the six ACF sub-basins are also plotted 

in Figures 3.17 to 3.18. All sub-basins show increasing temperature trends, with higher increases 

occurring in the summer months.  Precipitation is projected to increase during winter and 

decrease during summer for most watersheds. The Buford watershed in the upper Chattahoochee 

experiences the most marked changes.   
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Figure 3.9: Spatial temperature distributions over the ACF basin and the southeast US. Monthly 
temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns depict 

observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using input 
from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD downscaled 

data using input from the CGCM3.1-run1 A1B Scenario for the period 01/2000-12/2049 
(Column 3); and JVSD downscaled data using input from the CGCM3.1-run1A1B Scenario for 

the period 01/2050-12/2099 (Column 4).  
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Figure 3.10: Spatial precipitation distributions over the ACF basin and the southeast US. 
Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 

depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 
input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 

downscaled data using input from the CGCM3.1-run1A1B Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the CGCM3.1-run1 A1B 

Scenario for the period 01/2050-12/2099 (Column 4). 
 
 



 3-27

 

 
 

Figure 3.11: Spatial temperature distributions over the ACF basin and the southeast US. 
Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 

depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 
input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 

downscaled data using input from the CGCM3.1-run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the CGCM3.1-run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure 3.12: Spatial precipitation distributions over the ACF basin and the southeast US. 
Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 

depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 
input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 

downscaled data using input from the CGCM3.1-run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the CGCM3.1-run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure 3.13: Spatial temperature distributions over the ACF basin and the southeast US. 
Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON). The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); BCSD downscaled data using 
input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); BCSD 
downscaled data using input from the CGCM3.1-run1 A1B Scenario for the period 01/2000-
12/2049 (Column 3); and BCSD downscaled data using input from the CGCM3.1-run1 A1B 
Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure 3.14: Spatial precipitation distributions over the ACF basin and the southeast US. 
Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON). The columns 

depict observations for the period 01/1950 - 12/1999 (Column 1); BCSD downscaled data using 
input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); BCSD 

downscaled data using input from the CGCM3.1-run1A1B Scenario for the period 01/2000-
12/2049 (Column 3); and BCSD downscaled data using input from the CGCM3.1-run1A1B 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure 3.15: Spatial temperature distributions over the ACF basin and the southeast US. 
Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON). The columns 

depict observations for the period 01/1950 - 12/1999 (Column 1); BCSD downscaled data using 
input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); BCSD 

downscaled data using input from the CGCM3.1-run1 A2 Scenario for the period 01/2000-
12/2049 (Column 3); and BCSD downscaled data using input from the CGCM3.1-run1 A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure 3.16: Spatial precipitation distributions over the ACF basin and the southeast US. 
Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON). The columns 

depict observations for the period 01/1950 - 12/1999 (Column 1); BCSD downscaled data using 
input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); BCSD 

downscaled data using input from the CGCM3.1-run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and BCSD downscaled data using input from the CGCM3.1-run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure 3.17a: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under A1B Scenarios. 
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Figure 3.17b: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under A2 Scenarios. 
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Figure 3.18a: Climatologies of spatially aggregated precipitation and temperature for seven ACF 
watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) Albany, 
and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–BCSD downscaled (2000- 

2049); Blue–BCSD downscaled (2050-2099) under A1B Scenarios 
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Figure 3.18b: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–BCSD downscaled 
(2000- 2049); Blue–BCSD downscaled (2050-2099) under A2 Scenarios 
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3.3.5.2 Seasonal Joint CDF and Coefficients of Variability Comparisons 

First, the reliability of the seasonal joint temperature and precipitation CDFs is assessed for each 

watershed over the historical period 01/1950 - 12/1999 (control period). The CDFs are 

constructed for three datasets: (1) historical observational data (Maurer et al., 2002); (2) JVSD 

downscaled data; and (3) BCSD downscaled data (Wood et al., 2004). The results (Figures 3.19 

to 3.20) show that JVSD represents well the joint relationships over the entire frequency and data 

value ranges. On the other hand, BCSD exhibits various shortcoming especially in the low and 

high frequencies and extreme values.     

Second, the seasonal coefficient of variability (CV) for each watershed is computed and 

compared for both the observational and downscaled datasets. The seasonal watershed CV is the 

spatial mean of the seasonal coefficient of variability. The seasonal coefficient of variability at a 

particular grid cell is defined as the ratio of the standard deviation of the cell seasonal values to 

the mean seasonal value. Then, the watershed CV is obtained as the spatial mean of all seasonal 

CVs over all watershed grid cells.  Table 3.3 shows that the JVSD watershed CVs are more 

representative of the historical CVs than the BCSD CVs, especially for watershed precipitation. 

It also shows (as in the first test) that BCSD underestimates precipitation variability within each 

watershed. 

Table 3.3: Watershed coefficient of variability (CV) in seasonal precipitation and temperature 
for the ACF watersheds 

 

Watershed Season 
  

Precipitation 
  

  
Temperature 

  

    OBS  JVSD BCSD OBS JVSD BCSD 

Buford DJF 0.447 0.449 0.358 0.514 0.465 0.511 
 MAM 0.510 0.515 0.379 0.191 0.198 0.188 
 JJA 0.561 0.546 0.388 0.090 0.146 0.087 
 SON 0.553 0.561 0.456 0.442 0.432 0.440 
West Point DJF 0.446 0.453 0.389 0.379 0.344 0.389 
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 MAM 0.534 0.531 0.442 0.169 0.176 0.442 
 JJA 0.524 0.506 0.422 0.078 0.129 0.422 
 SON 0.612 0.616 0.544 0.358 0.345 0.544 
George DJF 0.455 0.467 0.411 0.298 0.270 0.411 

 MAM 0.552 0.538 0.464 0.153 0.159 0.464 
 JJA 0.556 0.525 0.438 0.064 0.112 0.438 
 SON 0.689 0.703 0.592 0.301 0.289 0.592 

Woodruff DJF 0.474 0.463 0.432 0.260 0.463 0.432 
 MAM 0.577 0.533 0.493 0.138 0.533 0.493 
 JJA 0.539 0.497 0.439 0.054 0.497 0.439 
 SON 0.692 0.686 0.616 0.267 0.686 0.616 

Montezuma DJF 0.461 0.479 0.396 0.329 0.304 0.329 
 MAM 0.526 0.522 0.442 0.159 0.166 0.158 
 JJA 0.569 0.539 0.425 0.073 0.122 0.071 
 SON 0.645 0.660 0.425 0.327 0.316 0.326 

Bainbridge DJF 0.486 0.480 0.561 0.274 0.251 0.268 
 MAM 0.553 0.530 0.422 0.142 0.147 0.141 
 JJA 0.547 0.496 0.467 0.059 0.106 0.056 
  SON 0.708 0.703 0.596 0.279 0.269 0.277 

 
 



 3-39

 
 

Figure 3.19: Joint CDFs of precipitation and temperature for each watershed and season 
corresponding to OBS and JVSD data: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) 

Montezuma, (6) Albany, and (7) Bainbridge 
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Figure 3.20: Joint CDFs of precipitation and temperature for each watershed and season 

corresponding to OBS and BCSD data: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) 
Montezuma, (6) Albany, and (7) Bainbridge 
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3.3.5.3 Spatial (Inter-Grid Variability) Comparison 

Many descriptive statistics exist to characterize the spatial patterns of gridded data including the 

covariance matrix (measurement of spatial dispersion), mean correlation coefficient 

(measurement of spatial correlation), and Ripley's K and L functions (measurements of spatial 

homogeneity of point data). This section examines the distribution of the pair-wise correlation 

between any two grid points within a watershed (Gissila et al., 2004).  

Box-plots of the pair-wise correlation coefficients across the ACF watersheds are shown 

in Figure 3.21. As shown, the temperature field (second row of plots in Figure 3.21) exhibits 

high grid point correlations (greater than 0.99), indicating that the monthly temperatures are 

highly homogeneous within each watershed.  Both JVSD and BCSD reproduce this homogeneity, 

but BCSD’s correlation distributions are overly concentrated in comparison to the historical and 

JVSD distributions.  

With respect to precipitation (first row of plots in Figure 3.21), the historical correlation 

distributions vary between 0.75 and 0.9.  The plots show that the JVSD distributions match very 

closely the historical statistics, while BCSD exhibits a significant bias toward homogeneity. 

While this distributional bias is not as critical with respect to temperature, misrepresenting the 

spatial precipitation variability is a more serious weakness, especially if hydrologic assessments 

are based on distributed watershed models. The plots also show that the southern ACF 

watersheds, i.e., those that are situated below the fall line, have much larger inter-grid 

precipitation variability than the two northern watersheds (Buford and West Point).  
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Figure 3.21: Box-plots of the pair-wise correlation coefficients across the ACF sub-basins: 
(1)Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6)Albany, and (7) 

Bainbridge  
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3.3.5.4 Comparison with Dynamic Downscaling Methods 

In this section, JVSD and BCSD are compared with the dynamic downscaling methods used in 

the North American Regional Climate Change Assessment Program (NARCCAP).      

High resolution climate scenarios have been produced by NARCCAP using regional 

climate models (RCMs).  The RCMs are nested within coupled Atmospheric-Ocean GCMs for 

the historical period 1971-2000 and for the future period 2041-2070 (NARCCAP, 2010).  

Several RCM/GCM combinations have been run and some of the products are available through 

the ESG (Earth System Grid; http://www.earthsystemgrid.org/) data distribution center. In the 

comparison presented herein, we select the results from one typical RCM/GCM combination 

corresponding to the Canadian GCM3 run4 data (cccma_cgcm3_1 sresa2, Run 4).    

 

Figure 3.22: Comparison Process of JVSD with Dynamic Downscaling Methods from the 
NARCCAP Dataset (CRCM/CGCM3) for the Future Period 2041-2070  

 

As illustrated in Figure 3.22, the results from CGCM3/SRESA2/RUN4 were downscaled 

using JVSD, BCSD, and CRCM/CGCM3 dynamic methods. The resulting precipitation and 
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temperature fields are aggregated over the ACF watersheds, and comparisons are made among 

these aggregated time series.  

It is noted that the CGCM3 experiment provides boundary conditions for the CRCM run 

(Randel, 2007) without any bias corrections. Therefore, the downscaled data inherit the original 

GCM biases.  To account for this inconsistency, JVSD was implemented and compared with 

CGCM3 with and without bias correction.  

The comparisons of temperature and precipitation time series for the ACF watersheds are 

respectively shown in Figures 3.23 and 3.24.  As indicated, the overall appearance of all 

downscaled time series is reasonably compatible. Conspicuously significant differences exist 

only for a few points. To better understand their differences, if any, the data values are expressed 

in frequency curves (Figures 3.25 and 3.26).  The graphs comprising these figures correspond to 

the ACF watersheds and include four curves corresponding to the dynamically downscaled data 

(blue line), BCSD downscaled data (pink line), JVSD downscaled data without bias correction 

(cyan line), and JVSD downscaled data with bias correction (green line). Temperature 

comparisons are shown on Figure 3.25, and precipitation on Figure 3.26.  

First, these comparisons show that the “No Bias Correction” JVSD version is very close 

to the dynamic downscaling method for both precipitation and temperature, thus supporting 

JVSD’s applicability in the southeast US. 

Second, the full JVSD (with bias correction) exhibits significant differences compared to 

the dynamic downscaling results for both temperature and precipitation.  In light of the good 

correspondence of the observed data and JVSD results, dynamic downscaling without some form 

of bias correction would not be suitable for hydrologic assessments.   
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Third, BCSD and JVSD (the bias correction version) are fairly consistent with respect to 

temperature, but exhibit significant differences with respect to precipitation.  The differences 

corroborate the findings of the previous comparisons indicating a BCSD tendency to generate 

less variable data, both temporally and spatially.  
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Figure 3.23: Comparisons of Downscaled Temperature Series for ACF Watersheds based on 
NARCCAP Methods, BCSD, JVSD with no bias correction, and JVSD with bias correction  
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Figure 3.24: Comparisons of Downscaled Precipitation Series for the ACF Watersheds based on 

NARCCAP Methods, BCSD, JVSD without bias correction, and JVSD with bias correction 
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BUFORD - Frequency Curve Dynamic Downscaling VS. Statistical (Temperature: oC)

0

5

10

15

20

25

30

35

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

P (DS)

P (BCSD)

P (JVSD)

P (JVSD_NO_BC)

WEST POINT - Frequency Curve Dynamic Downscaling VS. Statistical (Temperature: oC)

0

5

10

15

20

25

30

35

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

P (DS)

P (BCSD)

P (JVSD)

P (JVSD_NO_BC)

GEORGE - Frequency Curve Dynamic Downscaling VS. Statistical (Temperature: oC)

0

5

10

15

20

25

30

35

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

P (DS)

P (BCSD)

P (JVSD)

P (JVSD_NO_BC)



 3-49

 

 

 

MONTEZUMA - Frequency Curve Dynamic Downscaling VS. Statistical (Temperature: oC)

0

5

10

15

20

25

30

35

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

P (DS)

P (BCSD)

P (JVSD)

P (JVSD_NO_BC)

ALBANY - Frequency Curve Dynamic Downscaling VS. Statistical (Temperature: oC)

0

5

10

15

20

25

30

35

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

P (DS)

P (BCSD)

P (JVSD)

P (JVSD_NO_BC)

BAINBRIDGE - Frequency Curve Dynamic Downscaling VS. Statistical (Temperature: oC)

0

5

10

15

20

25

30

35

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

P (DS)

P (BCSD)

P (JVSD)

P (JVSD_NO_BC)



 3-50

 
 

Figure 3.25: Comparisons of Downscaled Temperature Frequencies for ACF Watersheds based 
on NARCCAP Methods, BCSD, JVSD with no bias correction, and JVSD with bias correction 
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BUFORD - Frequency Curve Dynamic Downscaling VS. Statistical (Precipitation: m/mo)
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MONTEZUMA - Frequency Curve Dynamic Downscaling VS. Statistical (Precipitation: m/mo)
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Figure 3.26: Comparisons of Downscaled Precipitation Frequencies for ACF Watersheds based 
on NARCCAP Methods, BCSD, JVSD with no bias correction, and JVSD with bias correction 
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3.4  Climate Assessments Based on Downscaled Scenarios 

Using the new downscaling method, the temperature and precipitation of all A1B and A2 IPCC 

scenarios were downscaled for the ACF river basin region.  The resulting temperature sequences 

for each ACF watershed were converted into potential evapotranspiration demand (Hammon 

PET method, Chapter 2) and are used together with the associated precipitation sequences as the 

basis of the assessments.  These sequences are expressed in the form of frequency curves for the 

historical (1900-1999) and future time series (2000-2099) and are plotted for every watershed in 

Figure 3.27 (A1B) and Figure 3.28 (A2). The figures support the following comments:   

(1) Both A1B and A2 scenarios exhibit increasing average PET for all ACF watersheds. 

Such increases intensify for watersheds in lower latitudes. 

(2) PET increases are uneven across the frequency distribution, with high PET values 

experiencing considerably higher increases than the average or low PET values.    

(3) Average precipitation changes over the ACF basin are insignificant. However, both 

distribution tails show significant changes, with high precipitation values exhibiting 

significant increases and low precipitation values exhibiting significant decreases. 

Namely, while the precipitation mean appears to stay comparable to the historical 

level, both extremes (floods and droughts) are expected to intensify; Combining this 

and previous findings, most ACF watersheds are likely to experience wetter winters 

(especially the watersheds in the upper Chattahoochee—Buford and West Point) and 

hotter summers (especially the watersheds in the Flint River—Montezuma and 

Albany) with more extreme floods and droughts possible;  

(4)  The A2 scenarios changes are more significant than those of A1B; and 
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(5) The differences among the GCM scenarios indicate large uncertainties associated 

with long-range climate simulations. It is thus important that hydrologic and water 

resources assessments be carried out for multiple scenarios and the results interpreted 

from an ensemble perspective.  Such assessments are taken up in the following 

chapters.     
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A1B, Buford - Precipitation Frequency Curve
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A1B, West Point - Precipitation Frequency Curve

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BCCR

CCCMA

CNRM

CSIRO

NOAA_GFDL

HADCM

MIUB

MPI_ECHAM5

NCAR_CCSM

INMCM

MRI

GISS

NCAR_PCM

HISTORICAL

A1B, West Point - PET Frequency Curve

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BCCR

CCCMA

CNRM

CSIRO

NOAA_GFDL

HADCM

MIUB

MPI_ECHAM5

NCAR_CCSM

INMCM

MRI

GISS

NCAR_PCM

HISTORICAL



 3-58

 

 

 

 

A1B, George - Precipitation Frequency Curve
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A1B, Montezuma - Precipitation Frequency Curve
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A1B, Albany - Precipitation Frequency Curve
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Figure 3.27: Frequency Curves of Precipitation and PET Sequences for A1B Scenarios 
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A2, Buford - Precipitation Frequency Curve
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A2, West Point - Precipitation Frequency Curve
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A2, George - Precipitation Frequency Curve
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A2, Albany - Precipitation Frequency Curve
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Figure 3.28: Frequency Curves of Precipitation and PET Sequences for A2 scenarios 
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Chapter 4 

Hydrologic Assessments 

4.1  Introduction 

This chapter describes the hydrologic component of the integrated climate assessment. This 

component utilizes the downscaled precipitation and potential evapotranspiration sequences and 

quantifies the corresponding ACF watershed response in terms of watershed evapotranspiration, 

soil moisture, and runoff. 

 Toward this goal, the study utilizes a new conceptual hydrologic model which simulates the 

important hydrologic processes operating at monthly time scales.  The model formulation, 

parameter calibration, and testing is described next. The use of the model in historical and future 

climate assessments for the ACF River Basin follows.         

4.2  Watershed Model 

4.2.1 Literature Review 

Watershed models have been developed since the 1940s for applications ranging from 

streamflow forecasting (e.g., Thornwaite, 1948; Thornwaite and Mather, 1955; Alley, 1985; Xu 

and Vandwiele, 1995; Georgakakos and Baumer, 1996; and Mohseni and Stefan, 1998), 

simulation of land hydrological processes (e.g., Liang et al., 1994; Arnold, 2005; Vieux, 2001; 

Koren et al., 2004; and Carpenter and Georgakakos, 2004), and, most recently, climate change 

assessments (Lettenmaier and Rind, 1992; Stamm et al., 1994; Conway, 1998; Wood et al., 2004; 

Maurer, 2007; and Yao and Georgakakos, 2001). 

The basis of all hydrologic models is the simulation of the relevant water flux processes 

over the watershed including rainfall, evapotranspiration, infiltration, percolation, soil moisture 

storage, and runoff.  The models can be generally distinguished as conceptual or physically 
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based, depending on the way they represent these processes. The physically-based models 

generally represent hydrological systems by small scale hill-slope drainage or channel storage 

elements. Such schemes generally result in a large number of model parameters, and pose 

calibration challenges.  Discussions of parameter optimization schemes and the issues associated 

with over-parameterization problems can be found in Duan et al., 1994; Gupta and Sorooshian, 

1998; Yapo et al., 1998; Duan et al., 2007; Wagener et al., 2009; and Apostolopoulos and 

Georgakakos, 1997.   

Conceptual models comprise a number of lumped storage elements which involve a 

limited number of parameters and are relatively easier to calibrate. It has been shown that 

increasing the number of parameters in a conceptual model can potentially increase model skill. 

However, there are also concerns of data over-fitting if the number of parameters becomes large.  

The storage-release relationships are the core components for any conceptual hydrologic 

model. Although linear storage-release forms (e.g., Wood, 1992) have been broadly used before, 

there is increasing interest in developing nonlinear storage-release relationships (e.g., Amorocho, 

1963, 1967; Wittenberg, 1999; Mishra et al., 2003; Brutsaert, 2005; and Botter, 2009). For 

instance, Wittenberg (1999) developed deterministic nonlinear reservoir algorithms extended for 

separation of baseflow from daily river discharges of 14 stations in the upper Weser and Ilmenau 

basins in Germany. Botter (2009) developed a series analytical stochastic solution for runoff 

variability by using different forms of nonlinearity, including concave/convex power and 

hyperbolic forms. These functional forms are pre-selected based on prior model calibration 

experience. Young (1993, 1998, 1999, and 2003) calls such models hypothetic-deductive, which 

implies that certain structural assumptions are made first, and then the associated parameters are 

estimated using various methods.  
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Alternatively, the inductive approach infers the functional model forms and associated 

parameters directly from data, the aim being to keep the model order and complexity minimal 

while achieving maximal statistical significance. A recent example of such an approach is 

provided by Kirchner (2009) for two headwater catchments of the Severn and Wye rivers at 

Plynlimon, Wales. In that study, each catchment is represented by a single storage element. The 

discharge from the single storage is determined by the storage alone and the storage-release 

function is estimated from an analysis of stream fluctuations. The catchment sensitivity to 

changes in storage is estimated by identifying times when the precipitation and 

evapotranspiration are relatively small. In cross validation, the Nash-Sutcliffe (N-S) efficiencies 

for the two watersheds were found to range from 0.82 to 0.94. This N-S efficiency range is 

compatible with a 4-parameter model. Kirchner’s modeling scheme can be improved by adding 

more components into the model structure (i.e., a second storage element) that would expand the 

applicability of such models to larger spatial and temporal scales. However, such extensions 

complicate the underlying function and parameter identification process.    

The model developed in this study extends Kirchner’s inductive approach by including 

additional water balance elements with non-linear storage-release functions, the forms and 

parameters of which are data driven. These functions and parameters are estimated using a 

recursive identification methodology suitable for multiple, inter-linked modeling components. 

The new model is applied here to intermediate scale watersheds (102 to 104 square miles) at 

monthly time resolution. However, the modeling concept is applicable to finer spatial and 

temporal scales, with additional modeling elements used to represent hydrologic process that 

become important at finer scales. 
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4.2.2 ACF Watershed Model Formulation 

The model formulation is similar to that of a lumped parameter Sacramento model type, and is 

intended to simulate the hydrologic processes of infiltration/percolation, evapotranspiration, and 

surface and subsurface runoff (Figure 4.1).  

Model inputs include precipitation and potential evapotranspiration demand (PET) 

averaged over the watershed area.  The model includes one surface and two subsurface moisture 

storage layers, with water contents S0, S1, and S2 respectively. Water enters the top model layer 

as precipitation, P, and, after some losses to surface retention, it infiltrates/percolates to the lower 

storage layers. Precipitation falling on impervious areas contributes immediately to runoff (QImp). 

Storage layers may be depleted by evapotranspiration ET0, ET1, and ET2, or runoff to the stream 

u0, u1, and u2.  Evapotranspiration depends on PET as well as storage.  Runoff depends on storage 

through the storage-runoff functions u0(S0), u1(S1), and u2(S2). Total runoff, Q, to the stream is 

the sum of all runoff contributions, Q = QImp + u0(S0) + u1(S1) + u2(S2). The 

infiltration/percolation functions u01 and u12 are key model elements and depend on various 

model variables.  In addition to the evapotranspiration, storage-runoff, and 

infiltration/percolation functions, model parameters include storage capacities. These functions 

and parameters are calibrated from contemporaneous observations of precipitation, PET, and 

total watershed runoff. The ACF watershed models developed in this study have a monthly time 

resolution.        

A notable difference between this and the Sacramento model formulation is the 

distinction of soil moisture as tension and free water.  The assumption underlying the ACF 

model implementation is that the apportionment, storage, and release of soil moisture to and 

from tension and free water storage occur at time scales much faster than a month. Thus, at 
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monthly time resolution, tension and free water can be combined into an aggregate soil moisture 

storage which can adequately represent the observed storage-runoff process.  

A similar argument is used to simplify the representation of the infiltration process (u01) 

and the dynamics of the surface storage (S0). 

While on an hourly time scale, the infiltration process is controlled by the soil infiltration 

capacity and the availability of surface water supply, at a monthly time scale, the actual 

infiltration dynamics is not observable.  Thus, over monthly intervals, it can be assumed that 

surface water (that is not retained in surface storage or does not become runoff from impervious 

surfaces) enters the upper sub-surface storage, provided that it is not filled to capacity.             

     The dynamics of the surface water storage is represented by the storage-runoff function 

u0(S0).  This storage begins to fill during significant precipitation events when subsurface storage 

is filled to capacity. While water release from this storage may develop over a period of few 

days, it is assumed that the storage depletion process (to runoff) will be fully completed over a 

period of a month without carryover effects.  Thus, a simple water balance representation 

equating surface water storage (less evaporation) to surface runoff would be adequate.  This 

particular assumption was tested in the ACF watersheds by using both a fully dynamic surface 

water element as well as the simpler water balance representation.  The calibration process 

showed that the optimal storage-release functions u0(S0) are nearly vertical, validating the 

assumption that, over a monthly time step, release from surface storage is practically 

instantaneous.                 
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Figure 4.1: Hydrologic Modeling System Schematic 

 

In keeping with the previous comments and assumptions, the mathematical model formulation is 

as follows: 

 Impervious Storage Runoff (Qimp), Retention Storage (Sret), and Effective Precipitation (Peff): 

    ,kPakQ impimp   

      ,P(k)b,kP
max{PET}

kPET
amaxkS retretret




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where k is the monthly interval index, P(k) is the precipitation depth (averaged over the 

watershed area), aimp is a constant coefficient; PET(k) is the potential evapotranspiration demand 

during month k (averaged over the watershed area), max{PET} is the maximum monthly PET 

over the simulation horizon, and aret and bret are constant coefficients.
 

 Evapotranspiration (ETi, i = 0, 1, 2): 

       
,2,1,0,

S2

1kSkS
kPETkET

0,1,2i

c
i

ii
i 






















i

 

 

where Si
c is the capacity of storage i, i=0, 1, 2. Various other forms including proportionality and 

exponent coefficients were also tested for the above relationship between ET, PET, and the 

monthly-average storage i as a fraction of the total storage capacity.  However, in all ACF 

watersheds, the above relationship performs best.    

 Storage Dynamics (Si, i=0, 1, 2): 

(i) Storage S1(k+1) not constrained by capacity limit:   

            ,kukukETkPkS1kS 1211eff11   

          ,(k)ukukukETkS1kS G122222   

  ,01kS0   

  .0ku0   

(ii) Storage S1(k+1) constrained by capacity limit:   

  ,S1kS c
11   
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             ,SkukukETkPkSkQ c
11211eff1sat   

          ,(k)ukukukETkS1kS G122222   

  ,01kS0   

      .kETkQku 0sat0   

Although the above dynamical relationships are expressed in monthly time steps, the actual 

simulation is performed at a finer resolution (e.g., daily intervals) to identify whether and when 

storage capacity limits are reached.  This is necessary, because when subsurface storages become 

saturated, the form of their dynamical relationships and fluxes change.        

 Storage-Runoff Functions (ui, i=1,2): 

     .2,1,)/21kS(k)(Suku iiii  i   

The functional forms of these relationships are identified as part of the model calibration process.     

 Percolation Functions (u12 and uG):  

         ,(k)]ET,kET,kP(k),S,kSuku 21eff211212   

where the functional form of this relationship is identified as part of the model calibration 

process. 

The deep percolation flux, uG, is included to model any significant groundwater-surface water 

interaction.  If such an interaction exists, its seasonal magnitude and direction is best determined 

by an external groundwater model.        

 Total Watershed Runoff (Q):  

          .kukukukQkQ 210imp   
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4.2.3 Parameter Estimation 

The parameter estimation (or model identification) process aims to identify a set of model 

parameters and functions such that model output matches with actual observations (total runoff 

Q) as best as possible.  The model parameters and functions can be distinguished in two 

categories: The first category includes parameters and functions of structural importance that 

govern the dynamical model response and the interaction/linkages among its structural 

components and processes (i.e., soil storages and runoff).  This primary parameter set includes:   

 Total storage capacity, Sc; 

 Lower soil moisture storage runoff function, u2(S2);  

 Upper soil moisture storage runoff function, u1(S1);  

 Upper and lower soil storage capacities, S1
c and S2

c;  and 

 Percolation function, u12(S1, S2, …). 

The second parameter category includes parameters that fine-tune model response, within the 

structural framework established by the primary parameters, to capture other hydrologic response 

aspects.  This secondary parameter set includes:  

 Impervious area runoff parameter, aimp;  

 Retention Storage parameters, aret and bret; and 

 Deep groundwater flux, uG(S2). 

This distinction is made here, because simultaneous estimation of all parameters, all too 

often, leads to parameter estimates assuming modeling roles for which they are not designed.  

The second reason for the estimation approach introduced in this work is to systematically and 

incrementally add processes and parameters that are necessary to explain system behavior, not 

based on a preconceived model design.     
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The estimation process is iterative and consists of (1) generating initial estimates of the 

parameters and functions, (2) iteratively refining the primary parameters and functions until no 

further improvements can be achieved, and (3) repeating the process for other secondary 

parameter values to fine-tune model performance.       

4.2.3.1 Initial Parameter and Function Estimates 

The estimation process begins by assuming initial parameter values for the retention storage, 

impervious runoff, and deep percolation terms.  In this work, deep percolation (i.e., percolation 

to groundwater aquifers from the lower soil moisture storage) is assumed negligible, but the 

estimation process can also accommodate the more general case. The other terms can also be 

initially assumed negligible. For the initial parameter values aimp, aret, and bret can be used to 

generate initial estimates of the impervious area runoff, Qimp, retention storage Sret, and effective 

rainfall Peff:  

    ,kPakQ impimp  k=1,…, N; 

      ,P(k)b,kP
max{PET}

kPET
amaxkS retretret









 k=1,…,N; and  

        N, 1,..., k   ,kQ(k)SkPkP impreteff    

where N is the total number of months in the historical horizon used for calibration.  

Then, the storage equations become:  

                ,kuku
S2

1kSkS
kPETkPkS1kS 121c

11
eff11 







 


 

             .kuku
S2

1kSkS
kPETkS1kS 122c

22
22 







 

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Adding the above dynamical equations results in the following aggregate soil storage equation: 

  
              ,kuku

S2

1kSkS
kPET(k)PkS1kS 21ceff 







 


 

 

where  S(k) = S1(k) + S2(k), and  u1(k) + u2(k) = Q - Qimp (total runoff from soil storage).  

Substituting the runoff terms by the observed total runoff (Q - Qimp), yields an aggregate storage 

relationship with only one unknown: the total aggregate soil storage capacity Sc.  However, 

determining the correct Sc value is not obvious, as different Sc values (and the observed forcing 

of P, PET and Q) simply give rise to different storage sequences.  The key to selecting the most 

suitable Sc value is to examine the global behavior of the storage sequence it generates and 

determine the one most consistent with the expected physical system response.   

 More specifically, the expected behavior of the hydrologic system is to have a smooth and 

monotonic response of runoff relative to storage. This is expected to hold particularly during 

periods of storage depletion when the dominant runoff contribution comes from the lower soil 

storage.  Thus, if the observed data does not contain errors, the correct Sc value should generate a 

storage sequence such that when 

 S(k+1)  <  S(k), S(n+1)  < S(n), and [S(k+1)+S(k)]/2  < [ S(n+1)+S(n)]/2,  

it should also hold that Q(k) < Q(n) for all such values of k and n. 

Namely, during storage depleting periods, the runoff corresponding to ranked storage values (in, 

say, descending order) should also adhere to the same ranking.  To be sure, because of the 

existing data errors in the observed values of P, PET, and Q, this relationship is not expected to 

be perfect.  But, the value of Sc that generates storages that adhere to this criterion as best as 

possible would represent the best Sc estimate.  While this is the main idea for identifying the 
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initial Sc estimate, there are several quantitative criteria (that have been tested in this work) to 

guide this process.  These will be discussed elsewhere.              

 An important side benefit of the above procedure is the identification of the lower storage 

runoff function u2(S2).  This function can be estimated by the ranked (Q-Qimp) versus ranked S 

relationship corresponding top the best Sc estimate.  As indicated earlier, these rankings do not 

include all runoff-storage paired values generated by the dynamical equation, but only those that 

comply with depleting storage conditions. Because the lower storage is depleted last, the basis of 

this relationship should be the lower part of the aggregate storage range, for example, the lower 

one third.  This relationship can then be approximated through a suitable analytical function such 

as a power function: 

uଶ ൌ βଶ,ଵ Sଶ
ஒమ,మ ,  

where β2,1 and β2,2 are constant coefficients.           

 The previous procedure can be repeated to provide initial estimates of S1
c and of u1(S1).  This 

involves substituting the newly obtained estimates of Sc and u2(S) into the aggregate storage 

equation and repeating the ranking process for S and [Q-Qimp-u2(S)]. The best value of S1
c is that 

for which the ranked data exhibit an almost one to one change of Q versus S.  This is because 

when the system is saturated, Q-Qimp is dominated by u0 which equals the storage in excess of 

S1
c.  The ranked [Q-Qimp-u2(S)] versus S relationship can then be analytically approximated to 

provide an initial estimate of the u1(S1) function.  As emphasized, these are only initial estimates 

to be revisited in the following stages of the estimation process.    

   At this stage, initial estimates of Sc, S1
c, S2

c (= Sc -  S1
c), u1[S1(k/k+1)], and u2[S2(k/k+1)] have 

been obtained, where the notation Si(k/k+1) is used to denote the average Si storage value over 
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the interval k. The last, and most crucial task in the initial estimation cycle, is to identify the 

percolation function u12.  To this end, the individual storage equations are re-instated as follows:        

              ,ku1)(k/kSu
S

1k/kS
kPETkPkS1kS 1211c

1
eff11 







 


 

          .ku1)(k/kSu
S

1)(k/kS
kPETkS1kS 1222c

2
22 







 


 

 

Consider a time step k with known initial storages S1(k) and S2(k).  Assuming at first that 

u12=0, the dynamical equations can be propagated to yield the end of the period storages S1(k+1) 

and S2(k+2).  This step requires a few iterations due to the dependence of {ETi, ui, i=1,2} on the 

end storage Si(k+1), but convergence is fast, requiring only two to three iterations.  This one-step 

computation also provides runoff estimates ui[Si(k/k+1)], i=1,2, which are used next to determine 

an optimal value for u12.  More specifically, this is accomplished by comparing the value of the 

model generated runoff, (u1 + u2), to the observed (Q-Qimp).  If these two quantities are equal, 

then u12 is indeed zero. Otherwise, the estimation process proceeds to determine the best u12 such 

that the values of (u1 + u2) and (Q-Qimp) are as close as possible.  This is a one-step, constrained 

optimization problem, where u12 is constrained to be within   

0 ≤ u12 ≤ min{S1(k), S2
c – S2(k)}, 

and the storage variables are constrained to be within their applicable ranges.  However, for each 

time step k, the solution can easily be obtained via an exhaustive, one dimensional search.                     

 This process generates a series of u12 values {u12(k), k=0, 1, 2, …, N-1} that are most 

consistent with the observed data and the other initial parameters and functions.  These values 

are used as the basis for relating u12 to other system variables that would be available when the 
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model runs in predictive mode (i.e., when Q is not known). Various functional forms were tested 

in this work for all ACF watersheds.  The best and most robust performance is obtained by the 

following relationship:  

uଵଶ ൌ  α଴ ൅ αଵ Pୣ ୤୤ሺkሻ ൅ αଶ  
ETభሺ୩ሻ

ETమሺ୩ሻ
൅ αଷ ETଶሺkሻ ൅ αସ  

Sభሺ୩ሻ

Sమሺ୩ሻ
 ൅ αହ Sଶሺkሻ ,  

where α0, α1, α2, α3, α4, and α5 are constant regression coefficients.  Furthermore, the continuing 

application of the model for several other Georgia basins supports the general validity of this 

functional form.  However, all models tested use a monthly time step, and the best u12 form may 

be different for daily or sub-daily time resolutions. 

 After the initial estimation of the parameters and functions, the model can be run in a 

predictive mode, and its performance can be assessed relative to observed runoff. Various 

criteria can be adopted to assess the model performance including the minimization of the sum of 

the square error or the absolute difference between model predictions and observations, and the 

maximization of the Pearson and Spearman correlation (average and monthly), among others. 

For a more unbiased assessment, a split sample approach can be adopted where a portion of the 

historical record is retained for model verification purposes.        

4.2.3.2 Parameter and Function Refinement 

In keeping with the above, parameter and function refinement proceeds iteratively as follows:  

(1) Select aimp, aret, and bret;  

(2) Select S0
c, S1

c, and S2
c, and estimate u2(S2) from the aggregate storage model; 

(3) Estimate u1(S1) and u12(Peff, ET2, ET1/ET2, S2, S1/S2) from the full model form and iterate 

until the model performance criterion is optimized;    

(4) Repeat Steps (2) to (4) until the best performing parameter and function set 

{S0
c, S1

c, S2
c, u2(S2), u1(S1), and u12(Peff, ET2, ET1/ET2, S2, S1/S2)} is obtained; 
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(5) Repeat Steps (1) to (5) until all model parameters are refined and model performance is 

optimized;  

(6) Identify data outliers by comparing each data point (predicted minus observed value) 

against the error distribution of the corresponding month;  

(7) Repeat Steps (1) through (7) until no model performance improvement is noted.         

Step (6) was found to be useful in generating more unbiased model parameters but also in 

pointing out data inconsistencies needing correction.  In some of the ACF watersheds, outliers 

occurred at a rate substantially higher than the statistically acceptable level. The parameter 

estimation process is computationally efficient, requiring only a few minutes on a high end 

personal notebook computer.      

 4.2.4  ACF Model Parameters and Performance 

The watershed model is developed for six ACF sub-watersheds: Buford, West Point, George, 

Montezuma, Albany, and Woodruff-Bainbridge (Figure 1.1).  Monthly hydro-climatic data 

(precipitation, temperature, potential evapotranspiration, and watershed runoff) for these 

watersheds are collected or calculated for the period from 1939 to 2007 (as referenced in Chapter 

2). The ACF watershed models were then calibrated over this period using the procedure 

outlined earlier.  

The results of the model calibration exercise are shown in Table 4.1. For all models, no 

retention storage term could add value to model performance. Table 4.2 reports average global 

statistics for model generated and observed runoff. As shown in the table, the overall model 

performance is good. Most model predictions are within ±10% of the observed values. The 

global Pearson and Spearman correlation coefficients are all higher than 0.9. The number of data 

outliers is between 30 and 50, or 3% - 5% of the historical records.  
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Figures 4.2 through 4.13 provide a graphical comparison between observed and simulated 

runoff, plots of the upper and lower soil moisture storage, and comparisons between observed 

and model climatologies (mean and standard deviation of monthly runoff). The above tables and 

graphs demonstrate the validity and good simulation skill of all ACF watershed models.     

4.3  Hydrologic Assessments 

4.3.1  Historical Assessments 

The watershed models described earlier are employed in this chapter to characterize the ACF 

hydrologic response under the historical climate. This assessment is based on historical climatic 

data for the period 1901 through 2009.  This data has been pieced together from three sources: 

(1) The Climatic Research Unit and the Tyndall Center of the University of East Anglia (for 

precipitation and mean daily temperature from 1901 to 2002); (2) the Georgia Automated 

Environmental Monitoring Network at the University of Georgia (for daily precipitation from 

2003 to 2009); and (3) the NCEP/NCAR reanalysis grid data set (for daily mean temperature 

from 2003 to 2009).            

 The assessments consist of running the ACF models under historical climatic forcing (of 

precipitation and temperature) for the 109 year period from 1901 to 2009 (in monthly steps).  

The model output sequences of soil moisture, evapotranspiration, and runoff are then used to 

assess the hydrologic watershed response. The assessment aims to (1) verify that the model 

hydrology is consistent with regional observations; (2) detect possible long term trends; and (3) 

create a baseline hydrologic response to be used as a comparison standard for the future climate 

assessments in the following section. 

 Figures 4.14 through 4.17 present the input (i.e., precipitation and potential 

evapotranspiration) and output (i.e., soil moisture, actual evapotranspiration, and runoff) 
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sequences of the Buford watershed assessment. For some sequences, in addition to monthly 

values, the graphs also present two-year moving average series to quantify inter-annual behavior.    

 The results support several comments and observations:  

 Watershed precipitation does not show any appreciable long term trend (Figure 4.14).  

However, the two-year average precipitation is highly variable, reaching a maximum depth of 

0.165 meters (in 1920) and a minimum depth of 0.085 meters (in 1986 and 2007-2008).  In the 

most severe droughts (e.g., those in the early 1940’s, 1950’s, 1980’s, 1998-2002, and 2006-

2008), large precipitation deficits linger for several years.  This model output is consistent with 

regional drought occurrences. The high inter-annual rainfall variability (up to 50% of normal) 

and persistence renders the watershed vulnerable to droughts and has critical implications for 

Lake Lanier at the watershed outlet.  The lake is large relative to watershed inflow, and lake 

filling can take several years.  On the other hand, high lake releases can deplete lake storage 

within a year.  Thus, lake operation should adhere to and adapt based on the prevailing 

hydrologic conditions. 

 Unlike precipitation, potential evapotranspiration (with its strong dependence on 

temperature) shows an increasing long term trend (Figure 4.14).  Over the 109 year assessment 

period, the increase is approximately 9% of the early 20th century value.   The inter-annual PET 

variability is much less than that of the precipitation.  At the latitude of the Buford watershed, 

precipitation is consistently higher than PET.  However, during droughts, when precipitation 

declines, PET increases and occasionally exceeds precipitation. The most pronounced such 

reversal occurred during the most recent drought (in 2006-2008).  The ratio of annual average 

PET to annual average precipitation is approximately 0.71.           
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 Total soil moisture storage shows a declining long term trend (Figure 4.15) of about 4% in 

109 years.  This decline is solely due to the decline of the lower storage zone, while the upper 

storage exhibits no changing trend.  The ratio of annual average S1 to annual average P is 

approximately 1.08, and that of S2 to P is 2.25.  Namely, the total sub-surface storage active in 

the rainfall-runoff process is 3.33 times the amount of annual average precipitation.   

 Actual evapotranspiration generally follows the PET trend but with a milder long term rate of 

increase (Figure 4.16). The reason for this difference is that actual evapotranspiration is also 

controlled by soil moisture storage, which, as indicated above, experiences a decline.  The ratio 

of average annual evaporation to annual average precipitation is 0.58.   

 Lastly, total runoff exhibits a declining trend of approximately 9% in 109 years (Figure 

4.17).  It is notable that the most recent drought (2006 to 2008) was the worst two-year drought 

on record. More specifically, the most severe two-year droughts (in order of decreasing severity) 

occurred in 2006-2008, 1980’s, 1940’s, 1950’s, 1930’s, 1998-2002, 1920’s, and 1900’s.  

Furthermore, the last three major droughts (1980-1988, 1998-2002, and 2006-2008) where 

among the most persistent.  The declining trend of total runoff is due to the declining trend of the 

lower storage runoff.  This trend implies that the watershed ability to sustain base river flows is 

diminishing. The runoff from the upper storage exhibits no significant trend.  The ratio of total 

annual average runoff to annual average precipitation is 0.42, while the contributions of the 

individual runoff components are (Qimp+u0)/P=0.1, u1/P=0.18, and u2/P=0.14.  

 Figures 4.18 to 4.37 present similar assessment results for West Point, George, Montezuma, 

Albany, and Woodruff-Bainbridge.  Each watershed has a distinct response, depending on its 

latitude, land cover, and soil type.  Summary statistics for each watershed are reported in Table 

4.3.  Some general comments and observations follow next:         
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 All watersheds exhibit increasing PET and ET and declining soil moisture storage and runoff 

trends.  These trends appear to be gaining strength in the last 30 to 40 years.  

 The ratio of ET to P is generally higher in lower latitude watersheds.  The watersheds are 

located in four distinct latitude regions: (1) Buford; (2) West Point and Montezuma; (3) George 

and Albany; and (4) Woodruff-Bainbridge.  Figure 4.38 depicts the average ET/P, (Total 

Runoff)/P, and (Qimp+u0)/P for each watershed.  For watersheds in lower latitudes, ET/P 

increases and (Total Runoff)/P decreases.  Ostensibly, Woodruff-Bainbridge (W-B) is an 

exception to these trends. The reason for this inconsistency is the strong surface water - 

groundwater interaction in this region which generally results in net water gain for the surface 

system.  The W-B watershed model does not include this interaction, and compensates for the 

increased watershed outflow by decreasing the evapotranspiration to precipitation ratio and 

increasing the runoff coefficient beyond their hydro-climatically consistent values.  Additional 

modeling efforts are needed in this region to assess the groundwater contribution to the surface 

system (through groundwater investigations), represent it as uG flux in the watershed model, and 

recalibrate the model parameters. This, effort will be undertaken as part of a separate study. 

Figure 4.38 also includes estimates of (Qimp+u0)/P by watershed. The watersheds with the 

highest fraction (Montezuma, West Point, and Buford) are also the most highly urbanized.  Soil 

type also influences u0.  The southern ACF watersheds (below the fall line) have predominantly 

sandy soils, while the northern watershed are dominated by clay loams.  As a consequence, 

southern watersheds are not as easily saturated, and u0 is relatively less.        

Figure 4.38 provides a summary view of how watershed hydrology changes with increasing 

PET.  The same general, albeit more gradual, response is expected for each individual watershed 

as PET continues to increase.  This response is seen in many of the future climate scenarios. 
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 Lastly, Figure 4.39 provides summary plots of each the main hydro-climatic sequence 

(precipitation, PET, ET, soil moisture, and runoff) for all watersheds.  The sequences are 

normalized by their corresponding mean to make it easier to discern temporal trends and 

variability range.  The plots verify the observations expressed earlier with precipitation staying 

relative stable across the ACF watersheds, PET and ET increasing, and soil moisture and runoff 

decreasing.  These figures show that all ACF watersheds are impacted fairly synchronously by 

dry and wet climate cycles, but the severity of these cycles differs for each watershed. For 

example the drought of 2006-2008 was the worst 2-year drought on record for the upper ACF 

basin (Buford, West Point, Montezuma), while the southern watersheds have experienced other 

more severe droughts.  These features have important management implications, the most 

important of which is the need for adaptive reservoir management.   

  In concluding this section, it is important to re-iterate its most important finding: Warming 

temperatures of the last decades are shown to be impacting the ACF hydrology by increasing 

evapotranspiration and reducing soil moisture and runoff.  These trends are assessed based on 

historical data, are consistent across the basin, and have critical long term implications for 

agriculture and water management.       

4.3.2 Future Assessments 

The future climate assessments consist of running the ACF watershed models under all A1B and 

A2 climate scenarios for the period from January 2000 through December 2099 (100 years) in 

monthly time steps.  For each of the 26 future climate scenarios (i.e., 13 A1B scenarios and 13 

A2 scenarios), the assessment process parallels the one described for the historical climate 

(previous section).  Thus, the future watershed response is characterized by two sequence 

ensembles, one for the A1B and a second for the A2 scenarios.  
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 Figures 4.40 and 4.41 respectively present the A1B and A2 ensembles for Buford.  The 

figures include plots of precipitation, evapotranspiration, soil moisture, and runoff, each one of 

which contains 14 sequences, 13 of which pertain to future climates and one (red thick line) to 

the historical baseline.  All sequences represent 12-month moving averages of the original 

monthly time series. The comparison is between the historical baseline and the future ensemble 

as a whole. For example, it can be seen on Figures 4.40 and 4.41 that the historical storage 

sequence is at the top of the future climate storage ensemble in the last part of the 21st century.  

This is a significant conclusion indicating that Buford soil moisture will most likely become drier 

than its historical levels.  

 Because of the voluminous results, a more meaningful comparison would be to plot the data 

in the form of frequency curves. For Buford, these are shown on Figures 4.42 and 4.43. These 

figures lead to the following observations:  

 While on average (i.e., in the vicinity of the 50% percentile), Buford precipitation is not 

expected to change relative to the historical baseline, the precipitation distribution is expected to 

“stretch” becoming wetter and drier than that of the historical climate.  This assertion holds for 

both the A1b and A2 scenarios, with the latter stretching the distribution farther.   

 Most future scenarios result in higher PET, evapotranspiration, and lower soil moisture 

storage.  This effect is especially pronounced in dry years (those that fall below 75% of the 

distribution values).  

 In the wettest 20% of the years, runoff is expected to be higher than historical.  However, the 

rest of the future ensemble distributions portend drier than historical runoff conditions.  Thus, the 

coming decades are likely to usher in more severe floods and droughts than those experienced in 

the historical past.                
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The previous results and conclusions are typical of all watersheds.  However, they are based 

on frequency comparison with all data. To examine the potential changes on a monthly basis, 

box plots of the historical and future scenarios were developed for each month of the year, 

watershed, climate scenario type (A1B or A2), and hydrologic process (precipitation, PET, soil 

moisture storage, and runoff).  These plots are shown on Figures 4.44 through 4.55. In each 

figure, the historical box-plots are denoted “H1 through H12” while next to them are the future 

scenario box-plots denoted “F1 through F12.” The future box-plots include data from all 13 

future scenarios, while the historical box-plots include only historical data.  These figures indeed 

show that climate change impacts are not uniform across the months of the year. More 

specifically, the following observations can be made: 

 Mean watershed precipitation does not show any appreciable change for all months of the 

year. However, the precipitation distributions for February through August are considerably 

extended (toward both ends) in comparison to the historical distributions.  This relative change is 

observed on the A1B and the A2 scenarios, as well as all watersheds.  

 Future PET exhibits higher mean and wider range than historical PET from February to 

September, with the largest change observed in July and August.  For these two months, the 

future mean PET is higher than the historical PET up to 12%, while the quartile range of the 

future distribution exceeds that of the historical by nearly 20%. 

 Future soil moisture is clearly lower than historical in June, July, August, September, and 

October.  The change is more pronounced in the southern watersheds where the mean reduction 

reaches up to 15% (e.g., for Albany under A2 in October).  Even more critical is the significant 

decline of the future low soil moisture levels (as indicators of agricultural droughts).  For 

example the future distributions’ 25% percentile is lower than the equivalent historical percentile 
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in all months. The summer months are particularly impacted, exhibiting a change of nearly 25 to 

30% in the southern watersheds where soil moisture is critical for agriculture. The adverse 

implications of this finding cannot be over-emphasized for Georgia’s economy. 

 Future runoff is wetter (in the mean and the 75% percentile) than historical in February, 

March, and April; and is drier than the historical in June, July, August, and September. In the 

southern watersheds, the mean runoff reduction begins in February and extends through 

September. For the summer months, the mean reduction is 5 to 8%.  The relative depletion of the 

lower soil moisture storage also impacts (dries up) the base river flows during droughts. The 

implications of these findings are critical for drought management and water resources planning.                         
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  Table 4.1: Watershed Model Parameters for the ACF Sub-basins 

  Buford West Point George Montezuma Albany Wdrff-Bnbrdge 

Storage Capacity and Impervious Area Coefficient 

Sc 0.5000 0.5300 0.4950 0.3660 0.4600 0.6250
S1

c 0.1900 0.1700 0.1800 0.1220 0.1470 0.2000
S2

c 0.4100 0.3700 0.3700 0.2540 0.3360 0.4250
aimp 0.0446 0.0480 0.0430 0.0510 0.0280 0.0220

Storage-Release Functions 

BetaPwr(2,1) 0.4133 4.5085 0.6914 0.7361 1.2038 0.2513
BetaPwr(2,2) 2.5486 5.4047 3.3248 2.5304 3.5806 2.4822
BetaPwr(1,1) 2.9347 322.5097 30.9356 4.7076 1750.2376 189.5458
BetaPwr(1,2) 2.5486 5.2126 3.8623 2.5304 5.5228 5.0231

Percolation Function 

Constant  0.0870 0.0949 0.0592 0.0514 0.0679 0.0929
ET2  0.1325 0.1813 0.1682 0.1937 0.2536 0.3019
ET1/ET2  -0.2750 -0.2947 -0.2535 -0.1338 -0.2245 -0.3085
S2  -0.1139 -0.1703 -0.0810 -0.1323 -0.1377 -0.1845
S1/S2  0.1950 0.2120 0.1984 0.0958 0.1600 0.2223
Peff  0.3949 0.3899 0.3834 0.3509 0.4023 0.4725
ErrSTDu12  0.0218 0.0124 0.0165 0.0137 0.0157 0.0156
 

 

Table 4.2: Model Performance Measures of ACF Sub-basins 

 Buford W. Point George Montezuma Albany Wdrff-Bnbrdge

Global Average Statistics 

AvgQ 0.0553 0.0367 0.0312 0.0333 0.0282 0.0360
AvgQM 0.0517 0.0328 0.0271 0.0314 0.0254 0.0324
StDevQ 0.0320 0.0275 0.0238 0.0250 0.0238 0.0221
StDevQM 0.0323 0.0293 0.0233 0.0254 0.0230 0.0213
AvgRnkQ 382.8673 384.8062 388.0504 438.0130 384.7426 384.3796
AvgRnkQM 380.3067 384.7460 393.2741 449.2707 387.0848 384.5328
StDevRnkQ 213.9214 215.6335 212.5994 246.4978 214.0671 213.6740
StDevRnkQM 212.6924 213.1692 210.1308 242.0462 211.8834 214.2371

Global Correlation Coefficients and Error Statistics 

Pcorr 0.9312 0.9399 0.9240 0.9289 0.8586 0.9101
SpCorr 0.9210 0.9282 0.8917 0.9110 0.8446 0.9006
QRMSE/Q 0.2244 0.3433 0.3502 0.2962 0.4681 0.2713
RnkQRMSE/RnkQ 0.4469 0.4647 0.4480 0.5130 0.6104 0.4552
QAbsQError/Q 0.1813 0.2818 0.2804 0.2345 0.3638 0.2263
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Table X.1: Historical ACF Hydrologic Assessment: Summary Statistics 

  

  

PET/P ET/P S1/P S2/P Runoff/P u1/P u2/P (Qimp+u0)/P

Buford 0.707 0.581 1.075 2.245 0.419 0.178 0.138 0.102
West Point 0.919 0.685 1.176 2.487 0.315 0.139 0.046 0.129
George 1.037 0.727 1.104 2.203 0.273 0.135 0.059 0.080
Montezuma 1.057 0.668 0.895 1.421 0.333 0.131 0.060 0.142
Albany 1.071 0.738 0.983 2.107 0.262 0.142 0.056 0.063
Woodruff-Bainbridge 1.006 0.664 1.230 2.341 0.335 0.143 0.121 0.071
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Figure 4.2: Modeled vs. Observed Flows and Storages for Buford 

 

 

Figure 4.3: Climatology of Modeled vs. Observed Flows for Buford 
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Figure 4.4: Modeled vs. Observed Flows and Storages for West Point 

 

 

Figure 4.5: Climatology of Modeled vs. Observed Flows for West Point 
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Figure 4.6: Modeled vs. Observed Flows and Storages for George 

 

 

Figure 4.7: Climatology of Modeled vs. Observed Flows for George 
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Figure 4.8: Modeled vs. Observed Flows and Storages for Montezuma 

 

 

Figure 4.9: Climatology of Modeled vs. Observed Flows for Montezuma 
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Figure 4.10: Modeled vs. Observed Flows and Storages for Albany 

 

 

Figure 4.11: Climatology of Modeled vs. Observed Flows for Albany 
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Figure 4.12: Modeled vs. Observed Flows and Storages for Woodruff-Bainbridge 

 

 

Figure 4.13: Climatology of Modeled vs. Observed Flows for Woodruff-Bainbridge 
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Figure 4.14: Buford Watershed Historical P and PET Sequences (1901 - 2009) 

 

 

Figure 4.15: Buford Watershed Historical Soil Moisture Storage Sequences (1901 - 2009)   

 

 

Figure 4.16: Buford Watershed Historical PET and ET Sequences (1901 - 2009)   
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 Figure 4.17: Buford Watershed Historical Runoff Sequences (1901 - 2009)   

 

 

Figure 4.18: West Point Watershed Historical P and PET Sequences (1901 - 2009) 

 

 

Figure 4.19: West Point Watershed Historical Soil Moisture Storage Sequences (1901 - 2009)   

 

0

0.05

0.1

0.15

0.2

0.25

0.3

1901-01 1911-01 1921-01 1931-01 1941-01 1951-01 1961-01 1971-01 1981-01 1991-01 2001-01

Q
, u

1
, u

2
 (m

)

Year-Month

Runoff (Q, u1, and u2) Q u2 u1 24 per. Mov. Avg. (Q) Linear (Q)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1901-01 1911-01 1921-01 1931-01 1941-01 1951-01 1961-01 1971-01 1981-01 1991-01 2001-01

P
, P

E
T

 (m
)

Year-Month

P and PET

PET P 24 per. Mov. Avg. (PET) Linear (PET) 24 per. Mov. Avg. (P) Linear (P)

0

0.1

0.2

0.3

0.4

0.5

0.6

1901-01 1911-01 1921-01 1931-01 1941-01 1951-01 1961-01 1971-01 1981-01 1991-01 2001-01

S
o

il 
M

o
is

tu
re

 (m
)

Year-Month

Soil Moisture Storage S2 S1 S1+S2 24 per. Mov. Avg. (S1+S2) Linear (S1+S2)



4-34 
 

 

Figure 4.20: West Point Watershed Historical PET and ET Sequences (1901 - 2009)   

 

 

Figure 4.21: West Point Watershed Historical Runoff Sequences (1901 - 2009) 

 

 

Figure 4.22: George Watershed Historical P and PET Sequences (1901 - 2009) 
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Figure 4.23: George Watershed Historical Soil Moisture Storage Sequences (1901 - 2009)   

 

 

Figure 4.24: George Watershed Historical PET and ET Sequences (1901 - 2009)   

 

 

Figure 4.25: George Watershed Historical Runoff Sequences (1901 - 2009) 
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Figure 4.26: Montezuma Watershed Historical P and PET Sequences (1901 - 2009) 

 

 

Figure 4.27: Montezuma Watershed Historical Soil Moisture Storage Sequences (1901 - 2009)   

 

 

Figure 4.28: Montezuma Watershed Historical PET and ET Sequences (1901 - 2009)   
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Figure 4.29: Montezuma Watershed Historical Runoff Sequences (1901 - 2009) 

 

 

Figure 4.30: Albany Watershed Historical P and PET Sequences (1901 - 2009) 

 

 

Figure 4.31: Albany Watershed Historical Soil Moisture Storage Sequences (1901 - 2009)   
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Figure 4.32: Albany Watershed Historical PET and ET Sequences (1901 - 2009)   

 

 

Figure 4.33: Albany Watershed Historical Runoff Sequences (1901 - 2009) 

 

 

Figure 4.34: Woodruff-Bainbridge Watershed Historical P and PET Sequences (1901 - 2009) 
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Figure 4.35: Woodruff-Bainbridge Watershed Hist. Soil Moisture Storage (1901 - 2009)   

 

 

Figure 4.36: Woodruff-Bainbridge Watershed Hist. PET and ET Sequences (1901 - 2009)   

 

 

Figure 4.37: Woodruff-Bainbridge Watershed Historical Runoff Sequences (1901 - 2009) 
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Figure 4.38: Average Hydrologic Response by Watershed (1901 - 2009) 
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Figure 4.39: Normalized, 2Yr Average Hydrologic Response (1901 - 2009) 
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Figure 4.40: A1B Climate Scenarios (2000-2099), Buford, Sequences  
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Figure 4.41: A2 Climate Scenarios (2000-2099), Buford, Sequences  
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Figure 4.42: A1B Climate Scenarios (2000-2099), Buford, Frequency Curves  
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Figure 4.43: A2 Climate Scenarios (2000-2099), Buford, Frequency Curves  
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Figure 4.44: Monthly Historical vs. Future (A1B) Watershed Response, Buford 
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Figure 4.45: Monthly Historical vs. Future (A2) Watershed Response, Buford 
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Figure 4.46: Monthly Historical vs. Future (A1B) Watershed Response, W. Point 
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Figure 4.47: Monthly Historical vs. Future (A2) Watershed Response, W. Point 
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Figure 4.48: Monthly Historical vs. Future (A1B) Watershed Response, George 
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Figure 4.49: Monthly Historical vs. Future (A2) Watershed Response, George 
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Figure 4.50: Monthly Historical vs. Future (A1B) Watershed Response, Montezuma 
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Figure 4.51: Monthly Historical vs. Future (A2) Watershed Response, Montezuma 
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Figure 4.52: Monthly Historical vs. Future (A1B) Watershed Response, Albany 
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Figure 4.53: Monthly Historical vs. Future (A2) Watershed Response, Albany 
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Figure 4.54: Monthly Historical vs. Future (A1B) Watershed Response, Woodruff-Bainbridge 
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Figure 4.55: Monthly Historical vs. Future (A2) Watershed Response, Woodruff-Bainbridge 
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Chapter 5 

Water Resources Assessments  

5.1 Introduction  

This chapter describes the third part of the ACF climate change assessment aiming to quantify 

the potential water resources impacts. A key input in the assessment process are the ACF 

watershed runoff sequences generated in the previous chapter as part of the hydrology 

assessment. These sequences are used to drive a water resources model that incorporates the 

river network, all storage projects and hydroelectric facilities, water withdrawals and returns, 

instream flow requirements, and management procedures.  This model is fully described in 

Volume 2 of this report, along with its application to drought assessments. What follows in this 

section and in Sections 5.2 and 5.3 is a summary of the modeling framework, operational ACF 

requirements, and data used in the assessment described in Section 5.4.      

The Apalachicola-Chattahoochee-Flint Decision Support System (ACF DSS) has been 

developed by GWRI to support planning and management of the ACF River Basin.  It consists of 

databases, interfaces, and various application programs interlinked to provide meaningful and 

comprehensive information for policy makers and managers.   

The ACF DSS uses a three modeling layer structure (Figure 5.1) to support decisions 

pertaining to various temporal scales and objectives. The three modeling layers include (1) 

turbine load dispatching (which models each turbine and hydraulic outlet and has hourly 

resolution over a horizon of one day), (2) short/mid range reservoir management (which has a 

daily resolution and a horizon of one month), and (3) long range reservoir management (which 

has a weekly resolution and a horizon of up to a year).  

The long range management model is designed to consider long range issues such as 

whether water conservation strategies are appropriate for the upcoming year in view of the 
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hydrologic forecasts. As part of these considerations, the DSS quantifies several tradeoffs of 

possible interest to the management agencies and system stakeholders.  These include, among 

others, relative water allocations to water users throughout the system (including ecosystem 

demands), reservoir coordination strategies and target levels, water quality constraints, and 

energy generation targets.   This information is provided to the appropriate management agencies 

(planning departments) to use it as part of their decision process together with other information. 

After completing these deliberations, key decisions are made on monthly water supply contracts, 

reservoir releases, energy generation, and reservoir coordination strategies.   

The short/mid range management model considers the system operation at finer time 

scales.  The objectives addressed are more operational than planning and include flood 

management, water supply, and power plant scheduling. This model uses hydrologic forecasts 

with a daily resolution and can quantify the relative importance of, say, upstream versus 

downstream flooding risks, energy generation versus flood control, and other applicable 

tradeoffs. Such information is again provided to management agencies (operational departments) 

to use it within their decision processes to select the most preferable operational policy.  Such 

policies are revised as new information on reservoir levels and flow forecasts comes in.  The 

model is constrained by the long range decisions, unless current conditions indicate that a 

departure is warranted.       

The real time model determines the hour by hour optimal turbine load schedules (e.g., 

turbine dispatching and flow regulation), which realizes all decisions made by the upper DSS 

models.    

The three modeling layers address planning and management decisions.  The 

scenario/policy assessment model addresses longer term planning issues such as changing 

demands, infrastructure changes (e.g., new reservoirs, water transfers, and recycling/re-use 
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options), potential hydro-climatic changes, and conservation/mitigation measures. The approach 

taken in this DSS layer is to simulate and inter-compare the system response under various 

inflow, demand, development, and management conditions.   

Altogether, the ACF DSS provides a comprehensive modeling framework responsive to 

the information needs of the decision making process at all relevant time scales.    

This study mainly uses the scenario assessment component to assess the impacts of 

various climate scenarios.  However, the long range management model is embedded within the 

scenario assessment model.  Furthermore, the long range management model uses objective 

function terms estimated (off-line) by lower ACF DSS levels.           

 

 

 

Figure 5.1: ACF DSS Modeling Framework 
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5.2 ACF Interim Operations Plan (IOP) 

The ACF river network comprises four major federal reservoirs (Lakes Lanier, West Point, W.F. 

George, and J. Woodruff); five smaller private hydropower plants; and 13 river nodes where 

tributary inflows, water withdrawals and returns, and instream flow target requirements occur. A 

system schematic is shown in Figure 5.2. The ACF is a key southeast river basin which is 

expected to serve multiple water uses in three states (Alabama, Florida, and Georgia). These uses 

include municipal, industrial, and agricultural water supply; environmental and ecological 

protection; flood control; hydropower generation; thermal power cooling; navigation; and 

recreation. Water management responsibility lies with the US Army Corps of Engineers, who 

manage the federal reservoirs based on the ACF operations plan.  

The recent ACF droughts have motivated a re-evaluation of the basin management 

procedures and led to the development of the Interim Operations Plan (IOP). The main purpose 

of the IOP is to support the needs of the endangered Gulf sturgeon during the spring spawn and 

the needs of two protected mussel species in the summer. The IOP specifies two parameters 

applicable to the daily releases from J. Woodruff Dam: a minimum discharge and a maximum 

fall rate.  

Under the IOP, the minimum discharge from the Woodruff Dam is determined based on 

total basin inflow, month of the year, and composite basin storage. The releases are measured as 

a daily average flow in cfs at the Chattahoochee gage in Florida. The IOP details are presented in 

Table 5.1. The composite storage is calculated by combining the storage of Lakes Lanier, West 

Point, and George. The storage of each individual reservoir is distinguished in four zones. These 

zones are determined by the operational rule curve for each project. The basin composite storage 

is also distinguished in four zones. Zone 1 of the composite storage represents the combined 

zone 1 storage of the above-mentioned three reservoirs; the other composite storage zones are 
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defined similarly as shown in Figure 5.3.  The IOP minimum Woodruff release curves for 

different seasons are displayed in Figures 5.4 to 5.6.  

 

 

Figure 5.2: ACF Basin Schematic 
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The second parameter in IOP is the constraint on the fall rate of the vertical drop at the 

Chattahoochee gage. The fall rates are expressed in units of feet per day (ft/day), and are 

measured as the difference between the daily average river stage of consecutive calendar days. 

The maximum fall rate schedule is described in Table 5.2.  

 

Table 5.1: IOP Minimum Discharge Constraints from Woodruff 

 

 

Table 5.2: Maximum Fall Rate Constraints at Chattahoochee Gage 

Release Range (cfs) Max. Fall Rate (ft/day) at Chattahoochee Gage 

>30000 No Restriction 

>20000 and <=30000 1 to 2 

>16000 and <=20000 .5 to 1 

>8000 and <16000 0.25 to 0.5 

<8000 <=0.25 

Note: No restrictions are placed on Composite Zone 4. 

Months Composite  Storage Zone Basin Inflow (BI) (cfs) Release (cfs)

>=34000 >=25000
>=16000 and <34000 >=16000+50%*(BI-16000)
>=5000 and <16000 >=BI

<5000 >=5000
>=39000 >=25000

>=11000 and <39000 >=11000+50%(BI-11000)
>=5000 and <11000 >=BI

<5000 >=5000
>=24000 >=16000

>=8000 and <24000 >=8000+50%(BI-8000)
>=5000 and <8000 BI

<5000 >=5000
>=5000 >=5000
<5000 >=5000

All Times Zone 4 >=5000
All Times Drought Zone >=4500

Zones 1, 2, and 3December-February

March -May

Zones 1 and 2

Zone 3

June - November Zones 1,2, and 3
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Figure 5.3: IOP Composite Reservoir Storage Zone Curves 

 

 

Figure 5.4: IOP Minimum Woodruff Release Curves from March to May 



 5-8 

 

Figure 5.5: IOP Minimum Woodruff Release Curves from June to November 

 

 

Figure 5.6: IOP Minimum Woodruff Release Curves from December to January  
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5.3 Water Use Data and Demand Scenarios 

Current (2007) water use data was provided by the Georgia Environmental Protection Division 

(Georgia EPD) and is used as baseline in this assessment.  The average withdrawals, returns, and 

net withdrawals at all locations are shown in Figure 5.7.  The corresponding monthly 

distributions are listed in Table 5.1.  It is noted that a large portion of the withdrawals from the 

Atlanta node is returned at Whitesburg downstream, where net withdrawals are negative.  

Water demand projections are used for the future period when climate datasets are 

assessed.  Figure 5.8 shows the water use projections for 2050 (also provided by Georgia EPD).  

Compared to the current water use, significant demand growth mainly occurs in the Metro 

Atlanta region (Upper Chattahoochee). Water use increases in the Lower Chattahoochee and the 

Flint River are projected to be very mild.  Thus, by 2050, the water withdrawals from the reach 

between Atlanta and West Point are increased to 1,258 from 722 cfs, a 172% growth.  During the 

same period, the projected water use returns in this region are also expected to increase 

considerably from 381 to 951 cfs, corresponding to a 250% growth.  This considerable increase 

of water returns is expected as a result of planned drainage and conservation infrastructure 

improvements.  As a result, the 2050 net withdrawals (307 cfs) are expected to be lower than 

those in 2007 (341 cfs). The infrastructure improvements are expected to be complete by 2050 

and remain in that state for some time thereafter.  Based on the above, water withdrawals in the 

Upper Chattahoochee are assumed to grow linearly from their current (2007) levels to the 2050 

targets.  The same assumption is applied to the monthly water return ratio which is also assumed 

to be increase linearly from 2007 to 2050, remaining constant thereafter.  The monthly 

distributions of the 2050 water demand projections are listed in Table 5.2.   
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Figure 5.7:  Current Water Demands 

Table 5.1: ACF 2007 Monthly Water Use Distributions 
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Month Buford Norcross Atlanta Whitesburg
West Point 
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Columbus George Andrews Montezuma Albany Newton Bainbridge Woodruff

1 174 0 386 35 79 67 31 0 102 16 20 5 220
2 179 0 377 30 91 72 26 0 99 27 20 6 234
3 191 1 394 37 92 80 27 0 101 55 34 24 240
4 207 1 438 38 97 95 35 0 113 104 40 54 297
5 260 1 498 50 113 114 41 1 114 175 78 166 495
6 275 1 558 50 116 111 50 2 134 217 93 226 613
7 268 1 524 45 113 104 46 3 160 322 91 246 591
8 270 1 539 48 114 117 53 1 148 372 91 264 602
9 241 0 510 46 115 106 38 0 107 142 101 264 537

10 223 0 463 37 94 90 41 0 118 37 43 156 310
11 202 0 430 31 97 80 35 0 109 32 54 121 281
12 180 0 388 34 94 72 34 0 95 56 45 90 281

AVG 223 0 459 40 101 92 38 1 117 130 59 135 392

1 19 2 80 300 4 9 49 3 10 20 26 1 168
2 23 2 81 307 5 12 55 4 11 25 27 0 166
3 21 3 85 293 4 11 51 2 11 19 26 1 168
4 20 3 84 287 4 10 43 0 20 31 24 1 171
5 19 3 81 286 4 8 38 0 19 23 22 1 169
6 21 2 83 286 4 8 45 0 19 21 24 1 170
7 20 2 82 260 4 8 48 0 21 22 24 1 173
8 20 2 88 269 5 9 46 0 20 21 24 1 171
9 20 2 86 245 4 9 44 1 11 14 29 1 174

10 22 2 88 268 4 9 45 3 15 26 0 1 173
11 21 2 85 221 4 8 41 3 15 21 23 1 170
12 19 2 90 263 4 8 47 3 22 27 24 1 165

AVG 20 2 84 274 4 9 46 2 16 23 23 1 170

1 155 -2 306 -265 75 59 -18 -3 92 -4 -6 4 52
2 157 -2 296 -277 87 60 -29 -4 89 2 -7 6 68
3 170 -2 309 -256 88 69 -24 -2 90 36 8 24 72
4 187 -2 354 -249 93 85 -8 0 92 73 16 53 126
5 241 -2 417 -236 109 106 3 0 95 151 55 166 326
6 254 -1 475 -236 112 103 4 2 115 197 69 226 443
7 248 -1 442 -215 110 96 -2 3 139 299 66 245 418
8 249 -1 450 -221 109 109 7 1 128 352 67 263 431
9 221 -2 424 -199 111 98 -6 -1 96 128 71 263 363

10 201 -2 375 -231 89 81 -4 -3 104 11 43 155 136
11 180 -2 345 -191 93 72 -6 -3 95 11 31 121 111
12 161 -2 299 -229 90 64 -12 -3 74 29 21 89 117

AVG 202 -2 374 -234 97 83 -8 -1 101 107 36 135 222

Net

Withdrawals

Returns
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Figure 5.8:  2050 Water Use Projections 

 

Table 5.3: 2050 Monthly Water User Projections 

 

 

ACF 2050 Water Use Projection
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Returns

Net

Month Buford Norcross Atlanta Whitesburg
West Point 

Lake
Columbus George Andrews Montezuma Albany Newton Bainbridge Woodruff

1 357 0 581 97 91 95 23 0 113 20 20 4 219
2 369 0 568 85 105 98 17 0 114 28 20 5 226
3 392 0 593 103 107 111 22 0 111 35 28 19 234
4 426 0 658 108 114 128 29 3 133 93 55 75 324
5 537 0 747 146 133 157 41 6 155 160 84 155 415
6 563 0 836 146 137 150 43 18 174 230 125 247 587
7 548 0 786 134 131 141 42 22 184 282 138 306 637
8 551 0 808 130 130 156 44 18 139 233 134 296 578
9 494 0 764 125 135 142 34 12 127 174 127 256 489

10 456 0 696 101 110 120 32 0 136 54 94 158 297
11 414 0 646 87 116 107 27 0 123 42 64 117 286
12 369 0 584 93 110 97 26 0 104 33 51 82 270

AVG 456 0 689 113 118 125 32 7 135 115 78 143 380

1 230 34 120 592 33 2 98 0 42 65 33 2 150
2 264 45 121 606 36 2 111 0 46 81 33 2 148
3 246 68 127 578 32 2 103 0 48 59 32 3 154
4 232 56 125 566 31 2 86 0 90 102 28 3 153
5 227 52 122 564 34 2 76 0 86 76 27 2 150
6 248 43 124 564 31 2 91 0 86 67 25 3 151
7 235 51 123 513 29 2 97 0 98 72 23 3 154
8 239 51 132 531 40 2 92 0 88 67 23 2 152
9 237 38 128 483 33 2 88 0 49 44 38 2 159

10 253 35 131 528 35 2 90 0 66 86 1 2 158
11 246 34 127 436 32 2 82 0 66 66 21 2 153
12 226 36 134 518 35 2 94 0 99 89 22 2 145

AVG 240 45 126 540 33 2 92 0 72 73 26 2 152

1 127 -34 461 -495 57 93 -75 0 70 -44 -13 2 70
2 105 -45 447 -520 69 96 -93 0 68 -53 -13 4 78
3 146 -68 466 -475 75 109 -81 0 63 -25 -4 16 80
4 193 -56 533 -458 83 126 -57 3 43 -10 27 72 171
5 309 -52 625 -418 100 155 -36 5 69 84 58 152 265
6 315 -43 712 -418 105 148 -48 18 88 163 99 244 435
7 314 -51 664 -379 102 140 -55 22 86 210 115 303 483
8 312 -51 676 -401 90 154 -48 18 51 166 111 294 426
9 257 -38 636 -358 102 140 -54 11 78 131 89 253 330

10 203 -35 565 -427 75 118 -58 0 71 -32 93 156 138
11 168 -34 519 -350 84 105 -55 0 57 -24 43 115 133
12 143 -36 451 -425 75 95 -68 0 5 -56 29 79 125

AVG 216 -45 563 -427 85 123 -61 6 62 42 53 141 228

Net

Withdrawals

Returns
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5.4 Climate and Demand Change Assessments 

The ACF DSS was run for all 26 inflow datasets generated from the IPCC climate scenarios. The 

statistics of the results were computed and compared with those of the baseline historical dataset.  

The baseline historical inflow dataset is from 1901 to 2009, and the future climate datasets are 

from 2000 to 2099.   

The assessment process is as follows:  For each week of the selected inflow dataset, the 

forecast and management models are activated first to generate optimal reservoir release 

sequences subject to the set of specified constraints.  In identifying these release sequences, the 

models first priority is to meet the constraints related to water withdrawals, instream minimum 

flows, power generation commitments (i.e., hours of dependable power capacity), turbine and 

power plant load limits, IOP flow targets, and reservoir storage ranges.  From the set of all 

feasible release sequences that meet these constraints, the DSS selects those that additionally 

maintain reservoir levels as high as possible and maximize long-term energy generation.  Thus, 

optimal release sequences are those which meet the stated constraints, safeguard the system 

against droughts, and maximize long-term energy generation.  Tradeoffs can be generated by 

varying the constraint levels of the various water uses and recording the relative differences in 

the basin response. 

The forecast and control models are implemented with a 4-week control horizon and 

reliability level of 50%.  Other control horizon and reliability values have also been used but 

yielded similar results. In particular, the 50% reliability was used in these runs to maintain high 

reservoir levels, especially in view of the existence of flood storage zones.  Inflow forecasts are 

obtained from an embedded historical analogue model and consist of 10 inflow traces (forecast 

ensemble) for each reservoir. At the very start of the simulation, the elevations of the four major 

reservoirs are set at 1056.25 feet for Lanier, 622 feet for West Point, 185.35 feet for George, and 
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77.5 feet for Woodruff.  The levels for the private reservoirs Morgan Fall, Bartletts Ferry, Goat 

Rock, Oliver, and North Highlands are equal to 866,  540, 415, 338 and 270 feet respectively, 

and remain constant throughout the simulation. This is a reasonable approximation in view of the 

limited storage capacity of these projects and their fairly constant weekly average levels. The 

minimum instream flows at Atlanta and Columbus are equal to 750 cfs and 1,850 cfs, 

respectively. The minimum flows at Chattahoochee are determined by the IOP requirement.  

From the optimal release sequences generated by the model, only the first week releases 

are actually implemented. The system response is then simulated using the selected inflows 

(which are not considered known at the time of the forecast).  If the optimal releases result in 

feasible end-of-the-week reservoir elevations, the program completes the forecast-control-

simulation step, records these elevations along with the releases, instream flows, and energy 

generation amounts, and repeats this process at the beginning of the next week. Otherwise, 

appropriate release adjustments are made so that all reservoirs stay within their feasible ranges. 

This forecast-control-simulation process is repeated for all weeks of the selected datasets and 

results in a long series of simulated reservoir elevations, releases, water supply deficits, instream 

flow target deficits, energy generation amounts, and other quantities of interest.  This data is then 

analyzed to develop statistics of system performance and make comparisons. 

System performance criteria include reservoir drawdown frequency and severity, 

instream flow target violations, water supply deficits, and energy generation.   

To assess the impact of future climate scenarios, a baseline case was run first. The 

baseline case uses the current water demand (2007) and the historical inflow record from 1901 to 

2009.  The baseline results indicate that the system meets all constraints throughout the period 

without much reservoir stress. Neither instream flow target nor water supply deficits occur. 

Although reservoir elevations experience significant drawdowns during the major droughts of 
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the 1950s, 1980s, 1998-2002, and 2006-2009, they are still able to maintain at least half of their 

storage capacity.  The simulated reservoir elevation, river flow, water supply, and energy 

generation sequences are shown in Figures 5.9 to 5.12.  

The ACF DSS assessment process was next applied to the 26 future climate scenarios, 

half of which correspond to the A1B emission type and the other half to A2. Both current (2007) 

demands and future demands (based on 2050 projections) are applied to each dataset.  All results 

are compared to the historical baseline using the system performance criteria mentioned earlier. 

More specifically, the following results (sequences and statistics) are presented for each 

assessment run:  

 Reservoir elevation sequences and frequency curves for Lanier, West Point, George, and 

Woodruff;  

 Instream flow deficit sequences, annual averages, and selected frequency curves for  

Atlanta, Whitesburg, Columbus, Andrews, and Chattahoochee (Florida);  

 Water supply (net water withdrawal) sequences, deficits, and frequency curves for 

Lanier and Atlanta, and annual average water supply deficits for Lanier, Atlanta, West 

Point, George, Montezuma, Albany, Newton, and Woodruff; 

 Energy generation frequency curves and annual averages for Buford, West Point, George, 

and Woodruff.   

5.4.1 A1B Climate Scenarios with 2007 Water Demands 

The simulated sequences under the A1B climate and current demand scenarios are displayed in 

Figures 5.16 to 5.28.   (All runs employ 2007 water demands repeated cyclically throughout the 

simulation horizon.)  For comparison purposes, the figures include results for all IPCC scenarios 

as well as the historical baseline (thick red lines).  Tables 5.3, 5.4, and 5.5 provide a summary of 

total instream flow target deficits, total water supply deficits, and annual average energy 
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generation for all assessment runs. Figures 5.13, 5.14, and 5.15 display the table results in 

graphical form. The results support the following conclusions and observations:  

Lake Levels: Compared to the historical baseline, the ensembles of future Lake Lanier levels and 

frequency curves do not show any significant bias (top plots in Figures 5.16 and 5.17).  Namely, 

nearly half of the future frequency curves fall above and half below the historical baseline. 

However, four out of the 13 scenarios lead to full depletion of Lake Lanier. This happens in 

extreme droughts and occurs for only a short period of time (less than 1%) in the entire 

assessment horizon. 

On the other hand, all other federal lakes show a clear future tendency to fall below the 

historical sequences (Figures 5.16 through 5.19).  The reason for this tendency is that the 

majority of the future climate scenarios produce drier than the historical streamflows for all ACF 

watersheds except Buford, the runoff response of which remains close to the historical patterns.  

All federal lakes are fully depleted in four of the future scenarios.           

Instream Flow Target Deficits: The driest future scenarios lead to occasional instream flow 

target deficits, especially toward the end of the century (Table 5.3, and Figures 5.13, 5.20, 5.21, 

and 5.22).  However, as the frequency curves for Atlanta and Chattahoochee (Figure 5.22) show, 

these violations are rather infrequent (occurring in less than 1% of the assessment horizon).  The 

frequency curves show that the 750 cfs Atlanta flow target is violated in four scenarios, for a 

total of three to eleven months.  Likewise, the 5,000 cfs Chattahoochee flow target is violated in 

the same four scenarios for a total of one to six months.   

Water Supply Deficits: Similarly to the instream flow targets, water supply deficits are infrequent 

and happen only when system storage is fully exhausted (Table 5.4, and Figures 5.14, 5.23, 5.24, 

and 5.25).  This can be seen in Figure 5.25 which depicts the water supply deficit frequency 

curves for Lanier and Atlanta where most significant violations occur.  The figure shows that 
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deficits as high as the full water supply targets may occur, but the frequency of this is very low—

one to five months in 100 years.   

Energy Generation: Annual energy generation from the federal reservoirs averaged across the 

future scenarios is 924 GWH compared to 953 GWH of the historical baseline, corresponding to 

a 3% reduction (Table 5.5 and Figure 5.15). The combined energy generation from the federal 

and the private reservoirs exhibits a 2.2% reduction (1,887 GWH in the future versus 1,929.5 

GWH in the historical horizon). 

The energy generation frequency curves (Figures 5.26 and 5.27) indicate that for Lanier, 

West Point, and George half of the thirteen future scenarios generate as much as or higher energy 

than the baseline in most years.  However, at the very low end of the distributions (future 

extreme droughts), all scenarios fall below the baseline. Woodruff’s response (Figure 5.27) is 

somewhat different because it receives the flows of the lower Chattahoochee as well as of the 

entire Flint River.  The combined runoff reductions in these two sub-basins are such that future 

energy generation is less than the historical generation for most future scenarios and years.  

Furthermore, the IOP and the Woodruff release constraints (Tables 5.1 and 5.2) modify the low 

distribution end.  As a result, in approximately 2.5% of the time (or in 30 months out of 100 

years), Woodruff cannot generate power.                    

 Overall, energy generation impacts are relatively small, because system storage 

compensates for the inflow deficits in most future climate scenarios.  

Summary: Overall, the A1B climate scenarios with 2007 demands exhibit mildly adverse water 

resources impacts compared to the historical baseline. However, the ensemble of future climates 

includes droughts (as well as floods) that are more extreme than those that occurred historically.  

During these extreme droughts, the basin storage is unable to meet the system water supply and 

instream flow requirements. 
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5.4.2 A2 Climate Scenarios with 2007 Water Demands 

Figures 5.28 to 5.39 show results from the A2 climate scenarios with current (2007) water 

demands.  

Lake Levels: Compared to the A1B scenarios and the historical baseline, the A2 future Lake 

Lanier levels (as seen by the frequency curves of Figure 5.29) clearly shift lower. Ten out of the 

13 A2 scenarios fall below the historical baseline, while eight of them experience full storage 

depletion in extreme droughts.  Storage is depleted in about 1% of the assessment horizon, but in 

one case the depletion time extends to 5%.  

All other federal lakes follow the same level pattern as in the A1B case (i.e., future levels 

are consistently lower than historical levels), albeit with more exacerbated drawdowns (Figures 

5.28 through 5.31).  This happens because A2 runoff scenarios are generally drier than A1B 

scenarios.  Most scenarios deplete all basin storage for a cumulative period of up to 2% of the 

assessment horizon (24 months).           

Instream Flow Target Deficits: The A2 scenarios cause more frequent instream flow target 

deficits than the A1B scenarios (Table 5.3, and Figures 5.13, 5.32, 5.33, and, especially, 5.34).  

The frequency curves for Atlanta (Figure 5.34) show that these violations continue to be 

infrequent (occurring in less than 1% of the assessment horizon), except in one case where they 

occur 4.5% of the time (or 4.5 years). Chattahoochee flow targets are violated even more 

infrequently, about 1/3 the Atlanta frequency rate.     

Water Supply Deficits: Similarly to the instream flow targets, water supply deficits are infrequent 

and happen only when system storage is fully exhausted (Table 5.4, and Figures 5.14, 5.35, 5.36, 

and, especially, 5.37).  Table 5.4 and Figure 5.14 show that the locations prone to water supply 

deficits are Lanier, Atlanta, and, to a lesser extent, Albany.  Figure 5.34 shows that water supply 

deficits occur for most scenarios, with a range of frequency and severity.  In the worst case, 
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deficits range up to the full water supply target and occur for up to 2% total time (2 years).  For 

most of the scenarios, however, violations occur for less than 0.5% of the time.   

Energy Generation: Annual energy generation from the federal reservoirs averaged across the 

A2 scenarios is 910 GWH compared to 953 GWH of the historical baseline, corresponding to a 

4.5% reduction (Table 5.5 and Figure 5.15). The combined energy generation from the federal 

and the private reservoirs is 1,854 GWH compared to 1,929.5 GWH of the historical period.. 

The energy generation frequency curves (Figures 5.38 and 5.39) indicate that more than 

half of the future scenarios generate less energy than the historical climate throughout the 

frequency range. At the very extreme droughts, and for a few months, generation ceases 

completely. The downward shift of the energy frequency curves is more pronounced at Woodruff 

(Figure 5.39), due to the drier A2 watershed response in the lower Chattahoochee and the Flint.                    

 Thus, A2 energy generation impacts are more significant than those of the A1B.  

Summary: Overall, the A2 climate scenarios with 2007 demands exhibit more exacerbated water 

resources impacts compared to the A1B scenarios and the historical baseline. These impacts 

become critical during extreme future droughts which deplete all basin storage.  The frequency 

with which this occurs is relatively low. 

5.4.3 A1B Climate Scenarios with 2050 Water Demands 

Figures 5.40 to 5.51 present the results from the A1B climate scenarios with future water 

demands.  

Lake Levels: Compared to the historical baseline, all lakes experience lower levels under these 

scenarios.  This is clearly seen on the frequency curves of Figures 5.41and 5.43. Lake Lanier is 

particularly affected, with more than half of the 13 scenarios depleting its storage for a total of 

about 5% of the time (5 years).              
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Instream Flow Target Deficits: The A1B/2050 scenarios cause more frequent instream flow 

target deficits in the upper Chattahoochee River than either the A1B/2007 or the A2/2007 

scenarios (Table 5.3, and Figures 5.13, 5.44, and 5.46).  The frequency curves for Atlanta 

(Figure 5.46) show that these violations occur for five scenarios and reach up to 4% of the 

assessment horizon (or 4 years). The Lower Chattahoochee and the Flint flow targets are violated 

more than the baseline but less than the A2/2007 case.     

Water Supply Deficits: Similarly to the instream flow targets, water supply deficits are more 

significant in the Upper Chattahoochee where natural inflows are deficient and demands are high 

(Table 5.4, and Figures 5.14, 5.47, 5.48, and 5.49).  Table 5.4 and Figure 5.14 show that the 

locations prone to water supply deficits are Lanier and Atlanta.  Figure 5.34 shows that water 

supply deficits occur for approximately half of the scenarios, with a range of up to the full water 

supply target and frequency up to 2% of the total time (2 years).     

Energy Generation: Annual energy generation from the federal reservoirs averaged across the 

scenarios is 922 GWH compared to 953 GWH of the historical baseline, corresponding to a 3.2% 

reduction (Table 5.5 and Figure 5.15). The combined energy generation from the federal and 

the private reservoirs is 1,882 GWH compared to 1,929.5 GWH of the historical period. 

The energy generation frequency curves (Figures 5.50 and 5.51) indicate that 

approximately half of the future scenarios generate less energy than the historical baseline 

throughout the frequency range. At the extreme droughts, generation ceases completely for a few 

months.                    

Summary: Overall, the A1B climate scenarios with 2050 demands impact more adversely the 

Upper Chattahoochee River where natural inflows are low and demands (for Atlanta) are high. 

The impacts are critical during extreme future droughts which deplete Lake Lanier storage.  
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5.4.4 A2 Climate Scenarios with 2050 Water Demands 

Figures 5.52 to 5.63 present the results of the A2 climate scenarios with future water demands.  

Lake Levels: Lake drawdowns under this scenario set are more severe than all previous cases, 

including the historical baseline (Figures 5.41and 5.43). Lake Lanier is particularly affected, 

with all 13 scenarios depleting its storage for a total of up to 9% of the time (9 out of 100 years).              

Instream Flow Target Deficits:  Instream flow target violations are also more frequent than all 

previous cases. Atlanta, Whitesburg, Columbus, and Chattahoochee are impacted most (Table 

5.3, and Figures 5.13, 5.56, 5.57, and 5.58).  The frequency curves for Atlanta (Figure 5.58) 

show that these violations occur for 11 out of 13 scenarios and reach up to 9% of the assessment 

horizon (or 9 years).  However, the violation frequency of most scenarios is less than 2%.     

Water Supply Deficits: Water supply deficits are more significant at Lanier and Atlanta (Table 

5.4, and Figures 5.14, 5.59, 5.60, and 5.61).  Table 5.4 and Figure 5.61 show that water supply 

deficits occur in almost all scenarios, range up to the full water supply target, and occur for up to 

2.5% of the total time (2.5 years).     

Energy Generation: Annual energy generation from the federal reservoirs averaged across the 

scenarios is 905 GWH compared to 953 GWH of the historical baseline.  Namely, energy 

generation is reduced by 5% (Table 5.5 and Figure 5.15). The combined energy generation from 

the federal and the private reservoirs is 1,849 GWH compared to 1,929.5 GWH of the historical 

period (corresponding to a 4.2% reduction). This reduction is reflected throughout the range of 

the energy generation frequency curves (Figures 5.62 and 5.63).                    

Summary: Among all tested scenarios, the A2 climate scenarios with 2050 demands accrue the 

most severe impacts with respect to all criteria. Since climate and demand changes are likely to 

occur simultaneously, it is important that the ACF water resources planning process recognize 

and protect against the risks of both.  This requires the timely adoption and implementation of 
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better water conservation programs, adaptive reservoir management procedures, and improved 

drought contingency plans that utilize hydro-climatic watershed information.    
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Table 5.3: Total Instream Flow Target Deficits over the Assessment Horizon (bcf) 

 
 
 

  Atlanta Whitesburg Columbus Andrews Chattahoochee Total
HisPeriod 0.00 0.00 0.00 0.00 0.00 0.00

A1B Scenario, Current Demands
clmtbccrbcm2a1brun1 0.00 0.00 0.00 0.00 0.00 0.00

clmtcccmacgcm31a1brun1 0.00 0.00 0.00 0.00 0.00 0.00
clmtcnrmcm3a1brun1 11.80 14.75 6.06 3.53 5.43 41.57

clmtcsiro_mk3_0sresa1brun1 0.00 0.00 0.00 0.00 0.00 0.00
clmtgfdl_cm2_1sresa1brun1 7.77 9.74 6.65 2.09 3.61 29.86

clmtgiss_model_e_rsresa1brun2 0.00 0.00 0.00 0.00 0.00 0.00
clmthadcm3A1B 6.62 8.84 13.00 13.21 27.94 69.62

clmtinmcm3_0sresa1brun1 16.66 21.05 23.88 21.68 47.06 130.32
clmtmiub_echo_g.sresa1b 0.00 0.00 0.00 0.00 0.00 0.00
clmtmpi_echam5.sresa1b 0.00 0.00 0.00 0.00 0.00 0.00

clmtmri_cgcm2_3_2asresa1brun1 0.00 0.00 0.00 0.00 0.00 0.00
clmtncar_ccsm3_0sresa1brun2 0.00 0.00 0.00 0.00 0.00 0.00

clmtncar_pcm1sresa1brun1 0.00 0.00 0.00 0.00 0.00 0.00
Average 3.30 4.18 3.82 3.12 6.46 20.88

A2 Scenario, Current Demands
clmtbccrbcm2a2run1 3.07 4.69 5.67 5.24 10.89 29.55

clmtcccmacgcm31a2run1 22.11 27.52 22.98 6.12 13.28 92.01
clmtcnrmcm3a2run1 7.53 10.27 10.47 12.28 23.08 63.63

clmtcsiro_mk3_0sresa2run1 4.42 4.67 0.00 0.00 0.00 9.09
clmtgfdl_cm2_1sresa2run1 6.49 9.93 5.31 0.04 1.23 23.00

clmtgiss_model_e_rsresa2run2 0.00 0.00 0.00 0.00 0.00 0.00
clmthadcm3A2 6.17 7.59 4.09 0.04 0.04 17.92

clmtinmcm3_0sresa2run1 78.94 94.45 95.67 54.25 132.09 455.40
clmtmiub_echo_g.sresa2 12.82 13.39 9.15 0.00 0.00 35.36
clmtmpi_echam5.sresa2 0.00 0.00 0.00 0.00 0.00 0.00

clmtmri_cgcm2_3_2asresa2run1 0.00 0.00 0.00 0.00 0.00 0.00
clmtncar_ccsm3_0sresa2run2 2.44 2.50 1.42 0.00 0.00 6.35

clmtncar_pcm1sresa2run1 0.00 0.00 0.00 0.00 0.00 0.00
Average 11.08 13.46 11.91 6.00 13.89 56.33

A1B Scenario, Future Demands
clmtbccrbcm2a1brun1_futdmnd 10.03 5.64 4.23 0.00 0.00 19.90

clmtcccmacgcm31a1brun1_futdmnd 0.00 0.00 0.00 0.00 0.00 0.00
clmtcnrmcm3a1brun1_futdmnd 32.26 26.74 14.44 7.68 15.33 96.45

clmtcsiro_mk3_0sresa1brunfutdmnd 0.00 0.00 0.00 0.00 0.00 0.00
clmtgfdl_cm2_1sresa1brunfutdmnd 47.19 27.08 21.37 6.08 10.20 111.91

clmtgiss_model_e_rsresa1brunfutdmnd 0.00 0.00 0.00 0.00 0.00 0.00
clmthadcm3A1Bfutdmnd 13.22 9.53 13.89 13.66 30.43 80.72

clmtinmcm3_0sresa1brunfutdmnd 74.57 48.12 37.33 20.90 48.34 229.26
clmtmiub_echo_g.sresa1bfutdmnd 0.00 0.00 0.00 0.00 0.00 0.00
clmtmpi_echam5.sresa1bfutdmnd 0.00 0.00 0.00 0.00 0.00 0.00

clmtmri_cgcm2_3_2asresa1brunfutdmnd 0.00 0.00 0.00 0.00 0.00 0.00
clmtncar_ccsm3_0sresa1brunfutdmnd 0.00 0.00 0.00 0.00 0.00 0.00

clmtncar_pcm1sresa1brunfutdmnd 0.00 0.00 0.00 0.00 0.00 0.00
Average 13.64 9.01 7.02 3.72 8.02 41.40

A2 Scenario, Future Demands
clmtbccrbcm2a2runfutDmnd 9.55 7.55 10.20 6.51 14.76 48.57

clmtcccmacgcm31a2run1_futdmnd 48.99 31.97 33.03 8.71 19.55 142.26
clmtcnrmcm3a2run1_futdmnd 40.22 28.92 18.95 17.36 33.55 139.00

clmtcsiro_mk3_0sresa2runfutdmnd 28.54 14.12 1.77 0.00 0.00 44.42
clmtgfdl_cm2_1sresa2runfutdmnd 16.47 11.44 7.94 0.02 1.74 37.61

clmtgiss_model_e_rsresa2runfutdmnd 0.00 0.00 0.00 0.00 0.00 0.00
clmthadcm3A2futdmnd 16.82 11.17 6.45 0.48 1.41 36.34

clmtinmcm3_0sresa2runfutdmnd 172.39 118.91 123.63 64.23 158.20 637.35
clmtmiub_echo_g.sresa2futdmnd 23.70 14.93 13.68 0.00 0.01 52.31
clmtmpi_echam5.sresa2futdmnd 3.31 1.37 0.09 0.06 0.00 4.84

clmtmri_cgcm2_3_2asresa2runfutdmnd 0.41 0.00 0.00 0.00 0.00 0.41
clmtncar_ccsm3_0sresa2runfutdmnd 13.41 8.18 4.95 0.00 0.00 26.53

clmtncar_pcm1sresa2runfutdmnd 0.00 0.00 0.00 0.00 0.00 0.00
Average 28.76 19.12 16.98 7.49 17.63 89.97
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Table 5.4: Total Water Supply Deficits over the Assessment Horizon (bcf) 

 
 

  

  Lake Lanier Atlanta W Point W George Montezuma Albany Newton Woodruff Total
HisPeriod 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A1B Scenario, Current Demands
clmtbccrbcm2a1brun1 0.00 0.00 0.00 0.00 0.00 0.44 0.15 0.00 0.58

clmtcccmacgcm31a1brun1 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.07
clmtcnrmcm3a1brun1 1.53 2.07 0.00 0.00 0.00 0.13 0.00 0.00 3.74

clmtcsiro_mk3_0sresa1brun1 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.27
clmtgfdl_cm2_1sresa1brun1 0.16 0.35 0.00 0.00 0.10 3.44 0.09 0.00 4.15

clmtgiss_model_e_rsresa1brun2 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.04
clmthadcm3A1B 1.01 1.51 0.03 0.00 0.00 0.16 0.13 0.00 2.84

clmtinmcm3_0sresa1brun1 0.42 1.64 0.16 0.00 0.00 0.14 0.00 0.00 2.36
clmtmiub_echo_g.sresa1b 0.00 0.00 0.00 0.00 0.00 0.07 0.04 0.00 0.11
clmtmpi_echam5.sresa1b 0.00 0.00 0.00 0.00 0.00 0.16 0.01 0.00 0.18

clmtmri_cgcm2_3_2asresa1brun1 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.00 0.05
clmtncar_ccsm3_0sresa1brun2 0.00 0.00 0.00 0.00 0.00 0.17 0.04 0.00 0.21

clmtncar_pcm1sresa1brun1 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.06
Average 0.24 0.43 0.01 0.00 0.01 0.40 0.04 0.00 1.13

A2 Scenario, Current Demands
clmtbccrbcm2a2run1 0.40 0.91 0.13 0.00 0.00 1.24 0.04 0.17 2.89

clmtcccmacgcm31a2run1 0.61 2.73 0.00 0.00 0.00 1.25 0.00 0.00 4.60
clmtcnrmcm3a2run1 1.26 2.20 0.23 0.00 0.00 2.20 0.00 0.00 5.90

clmtcsiro_mk3_0sresa2run1 0.21 0.44 0.00 0.00 0.01 0.27 0.00 0.00 0.93
clmtgfdl_cm2_1sresa2run1 1.69 2.33 0.17 0.00 0.09 3.52 0.00 0.00 7.79

clmtgiss_model_e_rsresa2run2 0.00 0.00 0.00 0.00 0.00 0.36 0.24 0.00 0.60
clmthadcm3A2 1.23 2.29 0.00 0.00 0.09 1.13 0.24 0.00 4.98

clmtinmcm3_0sresa2run1 4.21 13.83 0.84 0.00 0.04 0.50 0.10 0.17 19.70
clmtmiub_echo_g.sresa2 0.03 0.88 0.00 0.00 0.00 0.17 0.04 0.00 1.12
clmtmpi_echam5.sresa2 0.00 0.00 0.00 0.00 0.00 0.64 0.04 0.00 0.67

clmtmri_cgcm2_3_2asresa2run1 0.00 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.34
clmtncar_ccsm3_0sresa2run2 0.00 0.05 0.00 0.00 0.00 0.17 0.12 0.00 0.34

clmtncar_pcm1sresa2run1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average 0.74 1.97 0.11 0.00 0.02 0.91 0.06 0.03 3.84

A1B Scenario, Future Demands
clmtbccrbcm2a1brun1_futdmnd 0.97 2.62 0.00 0.00 0.00 0.02 0.17 0.00 3.79

clmtcccmacgcm31a1brun1_futdmnd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
clmtcnrmcm3a1brun1_futdmnd 7.33 14.86 0.00 0.00 0.00 0.00 0.00 0.00 22.19

clmtcsiro_mk3_0sresa1brunfutdmnd 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
clmtgfdl_cm2_1sresa1brunfutdmnd 7.77 21.51 0.10 0.00 0.00 0.64 0.09 0.00 30.11

clmtgiss_model_e_rsresa1brunfutdmnd 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.03
clmthadcm3A1Bfutdmnd 3.59 7.01 0.00 0.00 0.00 0.08 0.17 0.00 10.85

clmtinmcm3_0sresa1brunfutdmnd 4.80 31.97 0.12 0.00 0.00 0.02 0.00 0.04 36.96
clmtmiub_echo_g.sresa1bfutdmnd 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.07
clmtmpi_echam5.sresa1bfutdmnd 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.00 0.07

clmtmri_cgcm2_3_2asresa1brunfutdmnd 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.07
clmtncar_ccsm3_0sresa1brunfutdmnd 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.03

clmtncar_pcm1sresa1brunfutdmnd 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01
Average 1.88 6.00 0.02 0.00 0.00 0.07 0.05 0.00 8.02

A2 Scenario, Future Demands
clmtbccrbcm2a2runfutDmnd 1.07 3.14 0.00 0.00 0.00 0.18 0.07 0.14 4.60

clmtcccmacgcm31a2run1_futdmnd 6.62 27.15 0.00 0.00 0.00 0.16 0.00 0.00 33.93
clmtcnrmcm3a2run1_futdmnd 10.79 23.55 0.00 0.00 0.00 0.48 0.00 0.11 34.93

clmtcsiro_mk3_0sresa2runfutdmnd 2.29 12.89 0.00 0.00 0.00 0.02 0.00 0.00 15.20
clmtgfdl_cm2_1sresa2runfutdmnd 3.97 9.17 0.01 0.00 0.00 0.58 -0.01 0.00 13.72

clmtgiss_model_e_rsresa2runfutdmnd 0.00 0.00 0.00 0.00 0.00 0.03 0.35 0.00 0.39
clmthadcm3A2futdmnd 4.69 11.16 0.00 0.00 0.00 0.21 0.34 0.00 16.41

clmtinmcm3_0sresa2runfutdmnd 21.61 81.61 0.17 0.00 0.00 0.00 0.11 0.30 103.79
clmtmiub_echo_g.sresa2futdmnd 0.33 7.36 0.00 0.00 0.00 0.00 0.06 0.00 7.75
clmtmpi_echam5.sresa2futdmnd 0.00 0.52 0.00 0.00 0.00 0.12 0.03 0.00 0.67

clmtmri_cgcm2_3_2asresa2runfutdmnd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
clmtncar_ccsm3_0sresa2runfutdmnd 2.02 6.49 0.20 0.00 0.00 0.07 0.14 0.00 8.92

clmtncar_pcm1sresa2runfutdmnd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average 4.11 14.08 0.03 0.00 0.00 0.14 0.08 0.04 18.48
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Table 5.5: Annual Average Energy Generation over the Assessment Horizon (GWH) 

  Buford West Point W George Woodruff Total Private Res. Sys. Total
HisPeriod 170.3 190.1 395.1 197.6 953.1 976.5 1929.5

A1B Scenario, Current Demands
clmtbccrbcm2a1brun1 168.9 179.8 371.9 179.5 900.2 941.0 1841.1

clmtcccmacgcm31a1brun1 164.0 177.2 364.6 185.3 891.1 925.9 1817.0
clmtcnrmcm3a1brun1 155.0 170.9 353.1 173.7 852.7 901.0 1753.7

clmtcsiro_mk3_0sresa1brun1 175.0 191.3 392.5 186.1 944.8 992.6 1937.4
clmtgfdl_cm2_1sresa1brun1 165.5 181.4 382.5 181.0 910.3 949.5 1859.8

clmtgiss_model_e_rsresa1brun2 196.5 211.7 433.2 188.2 1029.6 1026.1 2055.7
clmthadcm3A1B 167.4 183.2 378.6 170.8 900.1 940.4 1840.4

clmtinmcm3_0sresa1brun1 130.5 149.6 316.2 162.9 759.2 821.3 1580.5
clmtmiub_echo_g.sresa1b 165.4 182.6 373.3 190.3 911.6 945.9 1857.6
clmtmpi_echam5.sresa1b 199.1 208.5 432.6 180.9 1021.0 1048.9 2070.0

clmtmri_cgcm2_3_2asresa1brun1 182.6 192.9 392.1 183.4 951.0 987.3 1938.3
clmtncar_ccsm3_0sresa1brun2 193.1 208.3 428.4 196.8 1026.7 1054.1 2080.8

clmtncar_pcm1sresa1brun1 178.7 191.0 390.0 192.6 952.2 946.4 1898.7
Average 172.4 186.8 385.3 182.4 927.0 960.0 1887.0

A2 Scenario, Current Demands
clmtbccrbcm2a2run1 173.9 187.5 380.7 181.3 923.5 967.5 1890.9

clmtcccmacgcm31a2run1 163.9 179.7 370.3 174.8 888.7 935.4 1824.1
clmtcnrmcm3a2run1 150.7 163.4 338.7 175.7 828.6 875.7 1704.3

clmtcsiro_mk3_0sresa2run1 168.7 188.5 396.8 185.1 939.1 974.2 1913.3
clmtgfdl_cm2_1sresa2run1 166.1 185.3 389.3 179.5 920.2 964.2 1884.4

clmtgiss_model_e_rsresa2run2 200.2 216.4 444.4 189.5 1050.5 1042.8 2093.2
clmthadcm3A2 163.8 179.6 380.6 177.2 901.1 940.2 1841.3

clmtinmcm3_0sresa2run1 125.8 150.2 318.6 163.9 758.4 817.2 1575.7
clmtmiub_echo_g.sresa2 156.7 170.7 359.3 189.7 876.4 902.1 1778.5
clmtmpi_echam5.sresa2 181.2 196.9 411.2 180.0 969.4 1005.3 1974.7

clmtmri_cgcm2_3_2asresa2run1 166.9 183.0 385.4 186.3 921.6 954.9 1876.4
clmtncar_ccsm3_0sresa2run2 172.7 184.1 378.2 190.5 925.5 956.5 1882.0

clmtncar_pcm1sresa2run1 175.9 188.4 381.1 186.6 932.0 931.5 1863.6
Average 166.7 182.6 379.6 181.6 910.4 943.7 1854.0

A1B Scenario, Future Demands
clmtbccrbcm2a1brun1_futdmnd 162.6 179.9 371.6 180.6 894.7 940.7 1835.4

clmtcccmacgcm31a1brun1_futdmnd 157.5 177.5 364.5 186.4 885.9 927.5 1813.4
clmtcnrmcm3a1brun1_futdmnd 148.8 170.6 352.9 174.7 847.1 900.1 1747.3

clmtcsiro_mk3_0sresa1brunfutdmnd 169.1 190.8 392.0 187.2 939.0 991.7 1930.7
clmtgfdl_cm2_1sresa1brunfutdmnd 160.0 181.4 382.3 181.6 905.2 948.8 1854.0

clmtgiss_model_e_rsresa1brunfutdmnd 191.6 211.6 432.9 189.0 1025.1 1025.8 2050.9
clmthadcm3A1Bfutdmnd 162.2 183.4 378.9 171.9 896.4 941.6 1838.0

clmtinmcm3_0sresa1brunfutdmnd 124.5 149.7 316.1 163.7 753.9 819.6 1573.5
clmtmiub_echo_g.sresa1bfutdmnd 158.8 182.0 372.5 191.5 904.8 945.0 1849.8
clmtmpi_echam5.sresa1bfutdmnd 193.5 208.7 432.8 181.8 1016.7 1050.4 2067.1

clmtmri_cgcm2_3_2asresa1brunfutdmnd 177.0 192.7 391.7 184.3 945.8 986.6 1932.4
clmtncar_ccsm3_0sresa1brunfutdmnd 187.5 207.8 427.7 197.9 1020.9 1052.9 2073.8

clmtncar_pcm1sresa1brunfutdmnd 173.8 190.8 389.8 193.7 948.1 946.8 1894.9
Average 166.7 186.7 385.0 183.4 921.8 959.8 1881.6

A2 Scenario, Future Demands
clmtbccrbcm2a2runfutDmnd 168.2 187.4 380.5 182.2 918.2 967.0 1885.2

clmtcccmacgcm31a2run1_futdmnd 157.9 180.0 370.3 175.7 883.9 936.0 1819.8
clmtcnrmcm3a2run1_futdmnd 144.9 163.9 338.8 176.5 824.1 875.7 1699.7

clmtcsiro_mk3_0sresa2runfutdmnd 163.1 188.3 396.6 186.1 934.1 974.3 1908.5
clmtgfdl_cm2_1sresa2runfutdmnd 160.2 185.5 389.2 180.5 915.4 964.8 1880.2

clmtgiss_model_e_rsresa2runfutdmnd 195.2 216.2 444.0 190.4 1045.8 1042.9 2088.7
clmthadcm3A2futdmnd 157.8 179.7 380.6 178.3 896.4 941.4 1837.8

clmtinmcm3_0sresa2runfutdmnd 120.2 150.6 319.1 164.5 754.5 817.7 1572.2
clmtmiub_echo_g.sresa2futdmnd 150.1 170.7 358.8 190.7 870.2 901.9 1772.1
clmtmpi_echam5.sresa2futdmnd 174.7 196.6 410.8 181.0 963.1 1005.2 1968.3

clmtmri_cgcm2_3_2asresa2runfutdmnd 160.3 182.5 384.6 187.4 914.8 953.4 1868.3
clmtncar_ccsm3_0sresa2runfutdmnd 166.6 183.8 377.7 191.4 919.4 955.6 1875.0

clmtncar_pcm1sresa2runfutdmnd 170.4 188.2 380.9 187.7 927.1 931.3 1858.3
Average 160.7 182.6 379.4 182.5 905.2 943.6 1848.8
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Figure 5.9: Historical Period, 2007 Demands, Reservoir Elevation Sequences 
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Figure 5.10: Historical Period, 2007 Demands, River Flow Sequences 
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Figure 5.11: Historical Period, 2007 Demands, Water Supply Sequences 
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Figure 5.12: Historical Period, 2007 Demands, Energy Generation Sequences 
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Figure 5.13: Total Instream Flow Target Deficits over the Assessment Horizon 
 
 
 
 

 
 

Figure 5.14: Total Water Supply Deficits over the Assessment Horizon 
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Figure 5.15: Average Annual Energy Generation over the Assessment Horizon 
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Figure 5.16: A1B, 2007 Demands, Reservoir Elevation Sequences 
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Figure 5.17: A1B, 2007 Demands, Reservoir Elevation Frequency Curves 
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Figure 5.18: A1B, 2007 Demands, Reservoir Elevation Sequences
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Figure 5.19: A1B, 2007 Demands, Reservoir Elevation Frequency Curves 
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Figure 5.20: A1B, 2007 Demands, Instream Flow Deficit Sequences 
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Figure 5.21: A1B, 2007 Demands, Instream Flow Deficit Sequences 
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Figure 5.22: A1B, 2007 Demands, Instream Flow Deficit Frequency Curves  

(The horizontal axis shows frequencies up to 10%.) 
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Figure 5.23: A1B, 2007 Demands, Water Supply Sequences 
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Figure 5.24: A1B, 2007 Demands, Water Supply Deficit Sequences 
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Figure 5.25: A1B, 2007 Demands, Water Supply Deficit Frequency Curves 

(The horizontal axis shows frequencies up to 10%.) 
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Figure 5.26: A1B, 2007 Demands, Energy Generation Frequency Curves 
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Figure 5.27: A1B, 2007 Demands, Energy Generation Frequency Curves 
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Figure 5.28: A2, 2007 Demands, Elevation Sequences
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Figure 5.29: A2, 2007 Demands, Elevation Frequency Curves 
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Figure 5.30: A2, 2007 Demands, Elevation Sequences 
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Figure 5.31: A2, 2007 Demands, Elevation Frequency Curves 
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Figure 5.32: A2, 2007 Demands, Instream Flow Deficit Sequences 
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Figure 5.33: A2, 2007 Demands, Instream Flow Deficit Sequences 
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Figure 5.34: A2, 2007 Demands, Instream Flow Deficit Frequency Curves 

(The horizontal axis shows frequencies up to 10%.) 
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Figure 5.35: A2, 2007 Demands, Water Supply Sequences 
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Figure 5.36: A2, 2007 Demands, Water Supply Deficit Sequences 
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Figure 5.37: A2, 2007 Demands, Water Supply Deficit Frequency Curves 

(The horizontal axis shows frequencies up to 10%.) 
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Figure 5.38: A2, 2007 Demands, Energy Generation Frequency Curves 
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Figure 5.39: A2, 2007 Demands, Energy Generation Frequency Curves 



 5-55 

 
 

 
 

Figure 5.40: A1B, Future Demands, Reservoir Elevation Sequences 
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Figure 5.41: A1B, Future Demands, Reservoir Elevation Frequency Curves 
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Figure 5.42: A1B, Future Demands, Reservoir Elevation Sequences 
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Figure 5.43: A1B, Future Demands, Reservoir Elevation Frequency Curves 
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Figure 5.44: A1B, Future Demands, Instream Flow Deficit Sequences 
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Figure 5.45: A1B, Future Demands, Instream Flow Deficit Sequences 
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Figure 5.46: A1B, Future Demands, Instream Flow Deficit Frequency Curves 
(The horizontal axis shows frequencies up to 10%.) 
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Figure 5.47: A1B, Future Demands, Water Supply Sequences 
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Figure 5.48: A1B, Future Demands, Water Supply Deficit Sequences 
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Figure 5.49: A1B, Future Demands, Water Supply Deficit Frequency Curves 

(The horizontal axis shows frequencies up to 10%.) 



 5-65 

 
 

Figure 5.50: A1B, Future Demands, Energy Generation Frequency Curves 



 5-66 

 
 

Figure 5.51: A1B, Future Demands, Energy Generation Frequency Curves 
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Figure 5.52: A2, Future Demands, Reservoir Elevation Sequences 



 5-68 

 
 

Figure 5.53: A2, Future Demands, Reservoir Elevation Frequency Curves 
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Figure 5.54: A2, Future Demands, Reservoir Elevation Sequences 
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Figure 5.55: A2, Future Demands, Reservoir Elevation Frequency Curves 
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Figure 5.56: A2, Future Demands, Instream Flow Deficit Sequences 
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Figure 5.57: A2, Future Demands, Instream Flow Deficit Sequences 
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Figure 5.58: A2, Future Demands, Instream Flow Deficit Frequency Curves 
(The horizontal axis shows frequencies up to 10%.) 
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Figure 5.59: A2, Future Demands, Water Supply Sequences 
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Figure 5.60: A2, Future Demands, Water Supply Deficit Sequences 
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Figure 5.61: A2, Future Demands, Water Supply Deficit Frequency Curves 

(The horizontal axis shows frequencies up to 10%.) 
 
 



 5-77 

 
 

Figure 5.62: A2, Future Demands, Energy Generation Frequency Curves  
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Figure 5.63: A2, Future Demands, Energy Generation Frequency Curves  
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Chapter 6 

Conclusions and Further Research Recommendations 

6.1  Conclusions 

This report describes an integrated climate assessment for the Apalachicola-Chattahoochee-Flint 

(ACF) river basin in the southeast US. The study combines (1) downscaling and assessment of 

future precipitation and temperature scenarios for six ACF sub-watersheds, (2) hydrologic 

assessments for each sub-watershed, and (3) water resources assessments for the entire basin.        

 The study has developed and demonstrated new methods in each assessment component. 

These contributions include a new downscaling method (Joint Variable Statistical Downscaling; 

Chapter 3), a new watershed model (Chapter 4), and a new decision support system for 

operational reservoir management (ACF decision support system; Chapter 5 and Volume II). 

 The main assessment findings are summarized below:  

ACF Climate and Hydrology:  

 Historical ACF precipitation (1901-2009) does not exhibit any appreciable long term trend.  

Furthermore, assessments with 26 IPCC future climate scenarios (2000-2099) do not indicate 

any long term change in mean precipitation.  However, the same scenarios indicate that the 

ACF precipitation distribution is expected to “stretch” becoming wetter and drier than that of 

the historical climate.  

 Unlike precipitation, temperature and potential evapotranspiration (with its strong 

dependence on temperature) show consistently increasing historical and future trends.               

 As a result of the increasing PET, soil moisture storage exhibits a declining trend historically 

as well as under future climates. This decline is solely due to the decline of the lower storage 

zone, while the upper storage exhibits no significant change.  Declining soil moisture has 
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critical implications for agriculture as well as for water management (due to decline base 

flows).      

 Lastly, watershed runoff, and thus river flow, exhibits a similar historical decline across all 

ACF watersheds.  This average trend is expected to persist in future climates indicating that 

future droughts are likely to be more severe than historical droughts. At the other extreme, 

future wet periods are expected to be wetter than those experienced historically, signifying a 

higher likelihood of severe floods.  However, the current study employs a monthly time step, 

and a proper flood risk assessment requires a daily or sub-daily resolution.       

ACF Water Resources:  

 Water resources impacts were assessed for the A1B and A2 climate scenarios and for 2007 

and future demands based on 2050 projections.  The assessment criteria included reliability of 

water supply for municipal, industrial, and agricultural users; lake levels; environmental and 

ecological flow requirements; and hydropower generation.    

 A1B climate scenarios with 2007 demands exhibit mildly adverse water resources impacts 

compared to the historical baseline. However, the ensemble of future climates includes 

droughts (as well as floods) that are more extreme than those that occurred historically.  

During these extreme droughts, the basin storage is unable to meet the system water supply 

and instream flow requirements. 

 The A2 climate scenarios with 2007 demands exhibit more exacerbated water resources 

impacts compared to the A1B scenarios and the historical baseline. These impacts become 

critical during extreme future droughts which deplete all basin storage.  The frequency with 

which this occurs is relatively low. 
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  The A1B climate scenarios with 2050 demands impact more adversely the Upper 

Chattahoochee River where natural inflows are low and demands (for Atlanta) are high. The 

impacts are critical during extreme future droughts which deplete Lake Lanier storage. 

 Among all tested scenarios, the A2 climate scenarios with 2050 demands accrue the most 

severe impacts with respect to all criteria. Since climate and demand changes are likely to 

occur simultaneously, it is important that the ACF water resources planning process 

recognize and protect against the risks of both.  This requires the timely adoption and 

implementation of better water conservation programs, adaptive reservoir management 

procedures, and improved drought contingency plans that utilize hydro-climatic watershed 

information. 

6.2  Further Research Recommendations 

Useful extensions of the current study include (1) revision of summer – early fall precipitation 

scenarios in light of future hurricane behavior; (2) representation of the groundwater – surface 

water interaction in the Woodruff  –  Bainbridge watershed; and (3) detailed climate assessments 

using a daily time step.  

 Hurricanes impact summer and early fall precipitation in the southeast US, spawning tropical 

storms and destructive floods.  Recent studies indicate that hurricane occurrence and severity 

will most likely be intensified by warming sea temperatures (Bender et al., 2010).  Future 

assessments would benefit by a more quantitative understanding of hurricane impact on summer 

and early fall precipitation, and would increase the value of climate model precipitation scenarios 

in hurricane prone areas.           

 The need for an accurate representation of the groundwater – surface water interaction in the 

lower Chattahoochee and Flint Rivers was identified and emphasized in Chapter 4.  This 
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interaction can be quantified through numerical groundwater models, and a climate assessment 

can be carried out to assess the response of the groundwater system (and its changing influence 

on the surface hydrology) under future climate scenarios.  An important element in this effort 

would be the accurate representation of current and future aquifer pumping which influences 

aquifer water table levels and determines the strength and direction of the groundwater – surface 

water interaction.                

 Lastly, daily and possibly sub-daily assessments would be necessary to quantify the climate 

change impacts associated with flooding.  This effort would mainly require that the hydrologic 

models be extended and re-calibrated to account for hydrologic processes that become important 

at finer time scales. Two such processes include (1) storage and depletion of tension soil water 

and (2) channel routing.  This effort is currently on-going.       
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Figure A.1: Spatial temperature distributions over the ACF basin and the southeast US. Monthly 
temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns depict 

observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using input 
from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD downscaled 

data using input from the CGCM3.1-run1 A1B Scenario for the period 01/2000-12/2049 
(Column 3); and JVSD downscaled data using input from the CGCM3.1-run1A1B Scenario for 

the period 01/2050-12/2099 (Column 4).  
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Figure A.2: Spatial precipitation distributions over the ACF basin and the southeast US. 
Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 

depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 
input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 

downscaled data using input from the CGCM3.1-run1A1B Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the CGCM3.1-run1 A1B 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.3: Spatial temperature distributions over the ACF basin and the southeast US. Monthly 
temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns depict 

observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using input 
from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD downscaled 

data using input from the CGCM3.1-run1A2 Scenario for the period 01/2000-12/2049 (Column 
3); and JVSD downscaled data using input from the CGCM3.1-run1A2 Scenario for the period 

01/2050-12/2099 (Column 4). 
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Figure A.4: Spatial precipitation distributions over the ACF basin and the southeast US. 
Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 

depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 
input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 

downscaled data using input from the CGCM3.1-run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the CGCM3.1-run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.5a: Climatologies of spatially aggregated precipitation and temperature for seven ACF 
watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) Albany, 
and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled (2000- 

2049); Blue–JVSD downscaled (2050-2099) under CGCM3.1-run1 A1B Scenarios. 
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Figure A.5b: Climatologies of spatially aggregated precipitation and temperature for seven ACF 
watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) Albany, 
and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled (2000- 

2049); Blue–JVSD downscaled (2050-2099) under CGCM3.1-run1 A2 Scenarios. 
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Figure A.6: Spatial temperature distributions over the ACF basin and the southeast US. Monthly 
temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns depict 

observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using input 
from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD downscaled 
data using input from the BCCR BCM2.0 -run1 A1B Scenario for the period 01/2000-12/2049 

(Column 3); and JVSD downscaled data using input from the BCCR BCM2.0 -run1 A1B 
Scenario for the period 01/2050-12/2099 (Column 4).  
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Figure A.7: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the BCCR BCM2.0 -run1A1B Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the BCCR BCM2.0 -
run1 A1B Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.8: Spatial temperature distributions over the ACF basin and the southeast US. Monthly 

temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns depict 
observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using input 
from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD downscaled 
data using input from the BCCR BCM2.0 -run1A2 Scenario for the period 01/2000-12/2049 

(Column 3); and JVSD downscaled data using input from the BCCR BCM2.0 -run1A2 Scenario 
for the period 01/2050-12/2099 (Column 4). 

 
 

 
 



 A-11

 
Figure A.9: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the BCCR BCM2.0 -run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the BCCR BCM2.0 -run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.10a: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under BCCR BCM2.0 -run1 A1B Scenarios. 
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Figure A.10b: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under BCCR BCM2.0 -run1 A2 Scenarios. 
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Figure A.11: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the NCAR_CCSM3.0 -run2 A1B Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the 
NCAR_CCSM3.0 -run2 A1B Scenario for the period 01/2050-12/2099 (Column 4).  
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Figure A.12: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the NCAR_CCSM3.0 -run2A1B Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the 
NCAR_CCSM3.0 -run2 A1B Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.13: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the NCAR_CCSM3.0 -run2A2 Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the 
NCAR_CCSM3.0 -run2A2 Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.14: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the NCAR_CCSM3.0 -run2A2 Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the 
NCAR_CCSM3.0 -run2A2 Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.15a: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under NCAR_CCSM3.0 -run2 A1B 

Scenarios. 
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Figure A.15b: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under NCAR_CCSM3.0 -run2 A2 Scenarios. 
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Figure A.16: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the CNRM CM3 -run1 A1B Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the CNRM CM3 -run1 A1B 

Scenario for the period 01/2050-12/2099 (Column 4).  
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Figure A.17: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the CNRM CM3 -run1A1B Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the CNRM CM3 -run1 A1B 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.18: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the CNRM CM3 -run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the CNRM CM3 -run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.19: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the CNRM CM3 -run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the CNRM CM3 -run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.20a: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under CNRM CM3 -run1 A1B Scenarios. 
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Figure A.20b: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under CNRM CM3 -run1 A2 Scenarios. 
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Figure A.21: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the CSIRO MK3.0 -run1 A1B Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the CSIRO MK3.0 -
run1 A1B Scenario for the period 01/2050-12/2099 (Column 4).  
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Figure A.22: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the CSIRO MK3.0 -run1A1B Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the CSIRO MK3.0 -run1 A1B 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.23: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the CSIRO MK3.0 -run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the CSIRO MK3.0 -run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.24: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the CSIRO MK3.0 -run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the CSIRO MK3.0 -run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.25a: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under CSIRO MK3.0 -run1 A1B Scenarios. 
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Figure A.25b: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under CSIRO MK3.0 -run1 A2 Scenarios. 
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Figure A.26: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the GFDL CM2.1 -run1 A1B Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the GFDL CM2.1 -run1 A1B 

Scenario for the period 01/2050-12/2099 (Column 4).  
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Figure A.27: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the GFDL CM2.1 -run1A1B Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the GFDL CM2.1 -run1 A1B 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.28: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the GFDL CM2.1 -run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the GFDL CM2.1 -run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.29: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the GFDL CM2.1 -run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the GFDL CM2.1 -run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.30a: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under GFDL CM2.1 -run1 A1B Scenarios. 
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Figure A.30b: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under GFDL CM2.1 -run1 A2 Scenarios. 
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Figure A.31: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the GISS ER -run2 A1B Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the GISS ER -run2 A1B 

Scenario for the period 01/2050-12/2099 (Column 4).  
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Figure A.32: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the GISS ER -run2A1B Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the GISS ER -run2 A1B 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.33: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the GISS ER -run2A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the GISS ER -run2A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.34: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the GISS ER -run2A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the GISS ER -run2A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.35a: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under GISS ER -run2 A1B Scenarios. 
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Figure A.35b: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under GISS ER -run2 A2 Scenarios. 
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Figure A.36: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the UKMO HADCM3 -run1 A1B Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the UKMO 
HADCM3 -run1 A1B Scenario for the period 01/2050-12/2099 (Column 4).  
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Figure A.37: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the UKMO HADCM3 -run1A1B Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the UKMO 
HADCM3 -run1 A1B Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.38: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the UKMO HADCM3 -run1A2 Scenario for the period 
01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the UKMO 

HADCM3 -run1A2 Scenario for the period 01/2050-12/2099 (Column 4). 
 
 

 



 A-47

 
Figure A.39: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the UKMO HADCM3 -run1A2 Scenario for the period 
01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the UKMO 

HADCM3 -run1A2 Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.40a: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under UKMO HADCM3 -run1 A1B 

Scenarios. 
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Figure A.40b: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under UKMO HADCM3 -run1 A2 

Scenarios. 
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Figure A.41: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the INMCM3.0 -run1 A1B Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the INMCM3.0 -run1 A1B 

Scenario for the period 01/2050-12/2099 (Column 4).  
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Figure A.42: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the INMCM3.0 -run1A1B Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the INMCM3.0 -run1 A1B 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.43: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the INMCM3.0 -run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the INMCM3.0 -run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.44: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the INMCM3.0 -run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the INMCM3.0 -run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.45a: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under INMCM3.0 -run1 A1B Scenarios. 
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Figure A.45b: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under INMCM3.0 -run1 A2 Scenarios. 
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Figure A.46Spatial temperature distributions over the ACF basin and the southeast US. Monthly 

temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns depict 
observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using input 
from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD downscaled 

data using input from the MIUB ECHO_G -run1 A1B Scenario for the period 01/2000-12/2049 
(Column 3); and JVSD downscaled data using input from the MIUB ECHO_G -run1 A1B 

Scenario for the period 01/2050-12/2099 (Column 4).  
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Figure A.47Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the MIUB ECHO_G -run1A1B Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the MIUB ECHO_G 
-run1 A1B Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.48Spatial temperature distributions over the ACF basin and the southeast US. Monthly 

temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns depict 
observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using input 
from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD downscaled 
data using input from the MIUB ECHO_G -run1A2 Scenario for the period 01/2000-12/2049 

(Column 3); and JVSD downscaled data using input from the MIUB ECHO_G -run1A2 Scenario 
for the period 01/2050-12/2099 (Column 4). 
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Figure A.49 Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the MIUB ECHO_G -run1A2 Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the MIUB ECHO_G 
-run1A2 Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.50: Climatologies of spatially aggregated precipitation and temperature for seven ACF 
watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) Albany, 
and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled (2000- 

2049); Blue–JVSD downscaled (2050-2099) under MIUB ECHO_G -run1 A1B Scenarios. 
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Figure A.50: Climatologies of spatially aggregated precipitation and temperature for seven ACF 
watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) Albany, 
and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled (2000- 

2049); Blue–JVSD downscaled (2050-2099) under MIUB ECHO_G -run1 A2 Scenarios. 
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Figure A.51: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the MPI ECHAM5 -run1 A1B Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the MPI ECHAM5 -
run1 A1B Scenario for the period 01/2050-12/2099 (Column 4).  
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Figure A.52: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the MPI ECHAM5 -run1A1B Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the MPI ECHAM5 -
run1 A1B Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.53: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the MPI ECHAM5 -run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the MPI ECHAM5 -run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.54: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the MPI ECHAM5 -run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the MPI ECHAM5 -run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.55a: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under MPI ECHAM5 -run1 A1B Scenarios. 
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Figure A.55b: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under MPI ECHAM5 -run1 A2 Scenarios. 
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Figure A.56: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the MRI CGCM2.3.2A -run1 A1B Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the MRI 
CGCM2.3.2A -run1 A1B Scenario for the period 01/2050-12/2099 (Column 4).  
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Figure A.57: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the MRI CGCM2.3.2A -run1A1B Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the MRI 
CGCM2.3.2A -run1 A1B Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.58: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the MRI CGCM2.3.2A -run1A2 Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the MRI 
CGCM2.3.2A -run1A2 Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.59: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the MRI CGCM2.3.2A -run1A2 Scenario for the period 

01/2000-12/2049 (Column 3); and JVSD downscaled data using input from the MRI 
CGCM2.3.2A -run1A2 Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.60a: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under MRI CGCM2.3.2A -run1 A1B 

Scenarios. 
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Figure A.60b: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under MRI CGCM2.3.2A -run1 A2 

Scenarios. 
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Figure A.61: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the NCAR PCM1 -run1 A1B Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the NCAR PCM1 -run1 A1B 

Scenario for the period 01/2050-12/2099 (Column 4).  
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Figure A.62: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the NCAR PCM1 -run1A1B Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the NCAR PCM1 -run1 A1B 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.63: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the NCAR PCM1 -run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the NCAR PCM1 -run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.64: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, SON).  The columns 
depict observations for the period 01/1950 - 12/1999 (Column 1); JVSD downscaled data using 

input from the 20CM3 experiment for the period 01/1950 - 12/1999 (Column 2); JVSD 
downscaled data using input from the NCAR PCM1 -run1A2 Scenario for the period 01/2000-
12/2049 (Column 3); and JVSD downscaled data using input from the NCAR PCM1 -run1A2 

Scenario for the period 01/2050-12/2099 (Column 4). 
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Figure A.65a: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under NCAR PCM1 -run1 A1B Scenarios. 
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Figure A.65b: Climatologies of spatially aggregated precipitation and temperature for seven 
ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6) 

Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); Green–JVSD downscaled 
(2000- 2049); Blue–JVSD downscaled (2050-2099) under NCAR PCM1 -run1 A2 Scenarios. 

 




