--- - attributes: ~ caption: "Projected percentages in each land-cover\r\n category for 2050 compared with 2010, assuming demographic and\r\n economic growth consistent with the high-growth emissions\r\n scenario (A2) (Data from USDA)." chapter_identifier: land-use-land-cover-change create_dt: 2012-12-07T16:30:00 href: https://data.globalchange.gov/report/nca3/chapter/land-use-land-cover-change/figure/projected-land-covers-20102050.yaml identifier: projected-land-covers-20102050 lat_max: ~ lat_min: ~ lon_max: ~ lon_min: ~ ordinal: 3 report_identifier: nca3 source_citation: USDA submission_dt: ~ time_end: ~ time_start: ~ title: Projected Land Covers (2010-2050) uri: /report/nca3/chapter/land-use-land-cover-change/figure/projected-land-covers-20102050 url: http://nca2014.globalchange.gov/report/sectors/land-use-and-land-cover-change/graphics/projected-land-covers-2010-2050 usage_limits: Copyright protected. Obtain permission from the original figure source. - attributes: ~ caption: 'Projected changes in sea surface temperature (°C) for the coastal United States under the higher scenario (RCP8.5). Projected anomalies for the 2050–2099 period are calculated using a comparison from the average sea surface temperatures over 1956–2005. Projected changes are examined using the Coupled Model Intercomparison Project Phase 5 (CMIP5) suite of model simulations. (Figure source: NOAA). ' chapter_identifier: ocean-acidification create_dt: 2017-04-12T15:37:30 href: https://data.globalchange.gov/report/climate-science-special-report/chapter/ocean-acidification/figure/projection.yaml identifier: projection lat_max: ~ lat_min: ~ lon_max: ~ lon_min: ~ ordinal: 3 report_identifier: climate-science-special-report source_citation: ~ submission_dt: 2017-09-01T20:55:07 time_end: ~ time_start: ~ title: Projected Changes in SST uri: /report/climate-science-special-report/chapter/ocean-acidification/figure/projection url: ~ usage_limits: Free to use with credit to the original figure source. - attributes: ~ caption: ~ chapter_identifier: illinois create_dt: 2015-04-13T00:00:00 href: https://data.globalchange.gov/report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-observed-number-of-very-hot-days.yaml identifier: il-observed-number-of-very-hot-days lat_max: 42.5084 lat_min: 36.9701 lon_max: -91.5129 lon_min: -87.4952 ordinal: 3a report_identifier: noaa-led-state-summaries-2017 source_citation: ~ submission_dt: ~ time_end: 2014-12-31T00:00:00 time_start: 1900-01-01T00:00:00 title: Observed Number of Very Hot Days uri: /report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-observed-number-of-very-hot-days url: ~ usage_limits: Free to use with credit to the original figure source. - attributes: ~ caption: ~ chapter_identifier: illinois create_dt: 2015-04-13T00:00:00 href: https://data.globalchange.gov/report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-observed-number-of-very-warm-nights.yaml identifier: il-observed-number-of-very-warm-nights lat_max: 42.5084 lat_min: 36.9701 lon_max: -91.5129 lon_min: -87.4952 ordinal: 3b report_identifier: noaa-led-state-summaries-2017 source_citation: ~ submission_dt: ~ time_end: 2014-12-31T00:00:00 time_start: 1900-01-01T00:00:00 title: Observed Number of Very Warm Nights uri: /report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-observed-number-of-very-warm-nights url: ~ usage_limits: Free to use with credit to the original figure source. - attributes: ~ caption: ~ chapter_identifier: illinois create_dt: 2015-04-13T00:00:00 href: https://data.globalchange.gov/report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-observed-number-of-very-cold-nights.yaml identifier: il-observed-number-of-very-cold-nights lat_max: 42.5084 lat_min: 36.9701 lon_max: -91.5129 lon_min: -87.4952 ordinal: 3c report_identifier: noaa-led-state-summaries-2017 source_citation: ~ submission_dt: ~ time_end: 2014-12-31T00:00:00 time_start: 1900-01-01T00:00:00 title: Observed Number of Very Cold Nights uri: /report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-observed-number-of-very-cold-nights url: ~ usage_limits: Free to use with credit to the original figure source. - attributes: ~ caption: ~ chapter_identifier: illinois create_dt: 2015-04-13T00:00:00 href: https://data.globalchange.gov/report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-observed-annual-precipitation.yaml identifier: il-observed-annual-precipitation lat_max: 42.5084 lat_min: 36.9701 lon_max: -91.5129 lon_min: -87.4952 ordinal: 3d report_identifier: noaa-led-state-summaries-2017 source_citation: ~ submission_dt: ~ time_end: 2014-12-31T00:00:00 time_start: 1900-01-01T00:00:00 title: Observed Annual Precipitation uri: /report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-observed-annual-precipitation url: ~ usage_limits: Free to use with credit to the original figure source. - attributes: ~ caption: 'Many forested areas in the U.S. have experienced a recent building boom in what is known as the “wildland-urban interface.” This figure shows the number of buildings lost from the 25 most destructive wildland-urban interface fires in California history from 1960 to 2007 (Figure source: Stephens et al. 2009ceb1c4ce-7513-4da2-b9a2-8bc8d7bd6a62).' chapter_identifier: land-use-land-cover-change create_dt: 2012-12-07T16:30:00 href: https://data.globalchange.gov/report/nca3/chapter/land-use-land-cover-change/figure/building-loss-by-fires-at-california-wildlandurban-interfaces.yaml identifier: building-loss-by-fires-at-california-wildlandurban-interfaces lat_max: ~ lat_min: ~ lon_max: ~ lon_min: ~ ordinal: 4 report_identifier: nca3 source_citation: 'Stephens et al. 2009ceb1c4ce-7513-4da2-b9a2-8bc8d7bd6a62' submission_dt: ~ time_end: ~ time_start: ~ title: Building Loss by Fires at California Wildland-Urban Interfaces uri: /report/nca3/chapter/land-use-land-cover-change/figure/building-loss-by-fires-at-california-wildlandurban-interfaces url: http://nca2014.globalchange.gov/highlights/report-findings/ecosystems-and-biodiversity/graphics/building-loss-fires-california usage_limits: Copyright protected. Obtain permission from the original figure source. - attributes: ~ caption: ~ chapter_identifier: alaska-infrastructure create_dt: 2017-09-25T18:19:04 href: https://data.globalchange.gov/report/epa-multi-model-framework-for-quantitative-sectoral-impacts-analysis-2017/chapter/alaska-infrastructure/figure/effect-of-adaptation-on-vulnerability.yaml identifier: effect-of-adaptation-on-vulnerability lat_max: ~ lat_min: ~ lon_max: ~ lon_min: ~ ordinal: 4 report_identifier: epa-multi-model-framework-for-quantitative-sectoral-impacts-analysis-2017 source_citation: ~ submission_dt: 2017-09-26T21:15:16 time_end: ~ time_start: ~ title: Effect of Adaptation on Vulnerability uri: /report/epa-multi-model-framework-for-quantitative-sectoral-impacts-analysis-2017/chapter/alaska-infrastructure/figure/effect-of-adaptation-on-vulnerability url: ~ usage_limits: Copyright protected. Obtain permission from the original figure source. - attributes: ~ caption: 'Trends in surface (< 50 m) ocean carbonate chemistry calculated from observations obtained at the Hawai‘i Ocean Time-series (HOT) Program in the North Pacific over 1988–2015. The upper panel shows the linked increase in atmospheric (red points) and seawater (blue points) CO2 concentrations. The bottom panel shows a decline in seawater pH (black points, primary y-axis) and carbonate ion concentration (green points, secondary y-axis). Ocean chemistry data were obtained from the Hawai‘i Ocean Time-series Data Organization & Graphical System (HOT-DOGS, http://hahana.soest.hawaii.edu). (Figure source: NOAA).' chapter_identifier: ocean-acidification create_dt: 2016-09-02T17:01:38 href: https://data.globalchange.gov/report/climate-science-special-report/chapter/ocean-acidification/figure/hot-data-20160721.yaml identifier: hot-data-20160721 lat_max: ~ lat_min: ~ lon_max: ~ lon_min: ~ ordinal: 4 report_identifier: climate-science-special-report source_citation: ~ submission_dt: 2017-10-31T16:44:43 time_end: ~ time_start: ~ title: Ocean Carbonate Chemistry uri: /report/climate-science-special-report/chapter/ocean-acidification/figure/hot-data-20160721 url: ~ usage_limits: Free to use with credit to the original figure source. - attributes: ~ caption: ~ chapter_identifier: illinois create_dt: 2015-04-13T00:00:00 href: https://data.globalchange.gov/report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-observed-spring-precipitation.yaml identifier: il-observed-spring-precipitation lat_max: 42.5084 lat_min: 36.9701 lon_max: -91.5129 lon_min: -87.4952 ordinal: 4a report_identifier: noaa-led-state-summaries-2017 source_citation: ~ submission_dt: ~ time_end: 2014-12-31T00:00:00 time_start: 1895-01-01T00:00:00 title: Observed Spring Precipitation uri: /report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-observed-spring-precipitation url: ~ usage_limits: Free to use with credit to the original figure source. - attributes: ~ caption: ~ chapter_identifier: illinois create_dt: 2015-04-13T00:00:00 href: https://data.globalchange.gov/report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-observed-summer-precipitation.yaml identifier: il-observed-summer-precipitation lat_max: 42.5084 lat_min: 36.9701 lon_max: -91.5129 lon_min: -87.4952 ordinal: 4b report_identifier: noaa-led-state-summaries-2017 source_citation: ~ submission_dt: ~ time_end: 2014-12-31T00:00:00 time_start: 1895-01-01T00:00:00 title: Observed Summer Precipitaton uri: /report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-observed-summer-precipitation url: ~ usage_limits: Free to use with credit to the original figure source. - attributes: ~ caption: 'Predicted change in sea surface pH in 2090–2099 relative to 1990–1999 under the higher scenario (RCP8.5), based on the Community Earth System Models–Large Ensemble Experiments CMIP5 (Figure source: adapted from Bopp et al. 2013fa10bfab-8f7c-4d8c-8435-8284a05d78e5).' chapter_identifier: ocean-acidification create_dt: 2016-11-11T21:55:22 href: https://data.globalchange.gov/report/climate-science-special-report/chapter/ocean-acidification/figure/acidif_future_fig3.yaml identifier: acidif_future_fig3 lat_max: ~ lat_min: ~ lon_max: ~ lon_min: ~ ordinal: 5 report_identifier: climate-science-special-report source_citation: ~ submission_dt: 2017-09-01T20:59:47 time_end: ~ time_start: ~ title: Surface pH in 2090s uri: /report/climate-science-special-report/chapter/ocean-acidification/figure/acidif_future_fig3 url: ~ usage_limits: Free to use with credit to the original figure source. - attributes: ~ caption: |+2 Figure 5: The observed number of days with extreme precipitation events (annual number of days with precipitation greater than 2 inches) for 1900–2014, averaged over 5-year periods; these values are averages from 43 available long-term reporting stations. A typical station experiences 1–2 such events each year. The number of extreme precipitation events has been above average since the 1990s. During the most recent 5-year period (2010–2014), Illinois experienced a record high number of events when stations averaged more than 2 events annually. The dark horizontal line is the long-term average (1900–2014) of 1.62 days per year. Source: CICS-NC and NOAA NCEI. chapter_identifier: illinois create_dt: 2015-04-13T00:00:00 href: https://data.globalchange.gov/report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-observed-number-of-extreme-precipitation-events.yaml identifier: il-observed-number-of-extreme-precipitation-events lat_max: 42.5084 lat_min: 36.9701 lon_max: -91.5129 lon_min: -87.4952 ordinal: 5 report_identifier: noaa-led-state-summaries-2017 source_citation: ~ submission_dt: ~ time_end: 2014-12-31T00:00:00 time_start: 1900-01-01T00:00:00 title: Observed Number of Extreme Precipitation Events uri: /report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-observed-number-of-extreme-precipitation-events url: ~ usage_limits: Free to use with credit to the original figure source. - attributes: ~ caption: 'Predicted change in dissolved oxygen on the σθ = 26.5 (average depth of approximately 290 m) potential density surface, between the 1981–2000 and 2081–2100, based on the Community Earth System Models–Large Ensemble Experiments (Figure source: redrawn from Long et al. 2016d04b2c86-5ca0-42e0-9792-2f319c15cd7e).' chapter_identifier: ocean-acidification create_dt: 2016-09-02T17:01:07 href: https://data.globalchange.gov/report/climate-science-special-report/chapter/ocean-acidification/figure/04-state-map-change-o2-iage.yaml identifier: 04-state-map-change-o2-iage lat_max: ~ lat_min: ~ lon_max: ~ lon_min: ~ ordinal: 6 report_identifier: climate-science-special-report source_citation: ~ submission_dt: 2017-09-14T18:32:44 time_end: ~ time_start: ~ title: Dissolved Oxygen uri: /report/climate-science-special-report/chapter/ocean-acidification/figure/04-state-map-change-o2-iage url: ~ usage_limits: Free to use with credit to the original figure source. - attributes: ~ caption: |+2 Long-term annual time series of the average water levels for Lake Michigan-Huron. Water levels in the Great Lakes have fluctuated widely over the years. Lake Michigan-Huron has shown a statistically significant downward trend over the past 150 years. The trend is largely due to the high levels early in the period and extremely low levels during the 21st century. Source: NOAA NOS and Canadian Hydrographic Service. chapter_identifier: illinois create_dt: 2014-04-24T11:41:00 href: https://data.globalchange.gov/report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-annual-lake-wide-average-water-levels-for-lake-michigan-huron.yaml identifier: il-annual-lake-wide-average-water-levels-for-lake-michigan-huron lat_max: 42.5084 lat_min: 36.9701 lon_max: -91.5129 lon_min: -87.4952 ordinal: 6 report_identifier: noaa-led-state-summaries-2017 source_citation: ~ submission_dt: ~ time_end: 2015-04-30T00:00:00 time_start: 1860-01-01T00:00:00 title: Annual Lake-Wide Average Water Levels for Lake Michigan-Huron uri: /report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-annual-lake-wide-average-water-levels-for-lake-michigan-huron url: ~ usage_limits: Free to use with credit to the original figure source. - attributes: ~ caption: 'Projected change in spring precipitation (%) for the middle of the 21st century compared to the late 20th century under a higher emissions pathway. Hatching represents areas where the majority of climate models indicate a statistically significant change. Spring precipitation in Illinois is projected to increase in the range of 10–20% by 2050. These increases are part of a large area of projected increases across the northern United States. Source: CICS-NC, NOAA NCEI, and NEMAC.' chapter_identifier: illinois create_dt: 2019-02-15T18:20:07 href: https://data.globalchange.gov/report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-projected-change-in-spring-precipitation.yaml identifier: il-projected-change-in-spring-precipitation lat_max: ~ lat_min: ~ lon_max: ~ lon_min: ~ ordinal: 8 report_identifier: noaa-led-state-summaries-2017 source_citation: ~ submission_dt: 2019-06-11T12:29:54 time_end: 2070-12-31T00:00:00 time_start: 1971-01-01T00:00:00 title: Projected Change in Spring Precipitation uri: /report/noaa-led-state-summaries-2017/chapter/illinois/figure/il-projected-change-in-spring-precipitation url: ~ usage_limits: Figure may be copyright protected and permission may be required. Contact original figure source for information - attributes: ~ caption: 'These wetland types are organic forested, organic nonforested, mineral forested, and mineral nonforested.' chapter_identifier: appendix-13a-terrestrial-wetland-area-and-carbon-pools create_dt: 2018-02-12T21:58:13 href: https://data.globalchange.gov/report/second-state-carbon-cycle-report-soccr2-sustained-assessment-report/chapter/appendix-13a-terrestrial-wetland-area-and-carbon-pools/figure/appendix-fig-13-1.yaml identifier: appendix-fig-13-1 lat_max: ~ lat_min: ~ lon_max: ~ lon_min: ~ ordinal: 1 report_identifier: second-state-carbon-cycle-report-soccr2-sustained-assessment-report source_citation: ~ submission_dt: 2019-03-15T13:32:40 time_end: ~ time_start: ~ title: Fig. 13A.1. Areal Distribution Among U.S. States of the Four Categories of Freshwater Terrestrial Wetlands uri: /report/second-state-carbon-cycle-report-soccr2-sustained-assessment-report/chapter/appendix-13a-terrestrial-wetland-area-and-carbon-pools/figure/appendix-fig-13-1 url: ~ usage_limits: Figure may be copyright protected and permission may be required. Contact original figure source for information - attributes: ~ caption: "These wetland types\r\nare forest organic soil, forest mineral soil, nonforest organic soil, and nonforest mineral soil." chapter_identifier: appendix-13a-terrestrial-wetland-area-and-carbon-pools create_dt: 2018-02-14T21:20:42 href: https://data.globalchange.gov/report/second-state-carbon-cycle-report-soccr2-sustained-assessment-report/chapter/appendix-13a-terrestrial-wetland-area-and-carbon-pools/figure/figure-13a-2--distribution-of-the-four-terrestrial-wetland-categories--e-g---forest--nonforest--organic-soil--mineral-soil--in-alaska-.yaml identifier: figure-13a-2--distribution-of-the-four-terrestrial-wetland-categories--e-g---forest--nonforest--organic-soil--mineral-soil--in-alaska- lat_max: ~ lat_min: ~ lon_max: ~ lon_min: ~ ordinal: 2 report_identifier: second-state-carbon-cycle-report-soccr2-sustained-assessment-report source_citation: ~ submission_dt: 2019-03-22T18:08:25 time_end: ~ time_start: ~ title: Fig. 13A.2. Areal Distribution in Alaska of the Four Categories of Terrestrial Wetlands uri: /report/second-state-carbon-cycle-report-soccr2-sustained-assessment-report/chapter/appendix-13a-terrestrial-wetland-area-and-carbon-pools/figure/figure-13a-2--distribution-of-the-four-terrestrial-wetland-categories--e-g---forest--nonforest--organic-soil--mineral-soil--in-alaska- url: ~ usage_limits: Figure may be copyright protected and permission may be required. Contact original figure source for information - attributes: ~ caption: "Allochthonous carbon represents organic and\r\ninorganic carbon, including dissolved carbon dioxide (CO2), that enters aquatic environments from terrestrial systems.\r\nAutochthonous carbon originates from primary and secondary production that uses either atmospheric CO2 or\r\ndissolved inorganic carbon from the aquatic environment. Primary production within autotrophic systems is responsible\r\nfor the net uptake of atmospheric CO2, while respiration and allochthonous inputs of carbon within a heterotrophic\r\nsystem are responsible for a net CO2 emission to the atmosphere. Burial represents the deposition of autochthonous\r\nand allochthonous particulate carbon." chapter_identifier: inland-waters create_dt: 2018-04-23T16:25:13 href: https://data.globalchange.gov/report/second-state-carbon-cycle-report-soccr2-sustained-assessment-report/chapter/inland-waters/figure/14-2-carbon-in-the-aquatic-environment--still-a-draft.yaml identifier: 14-2-carbon-in-the-aquatic-environment--still-a-draft lat_max: ~ lat_min: ~ lon_max: ~ lon_min: ~ ordinal: 1 report_identifier: second-state-carbon-cycle-report-soccr2-sustained-assessment-report source_citation: ~ submission_dt: 2019-02-11T16:52:51 time_end: ~ time_start: ~ title: Carbon Flux Pathways in Aquatic Environments uri: /report/second-state-carbon-cycle-report-soccr2-sustained-assessment-report/chapter/inland-waters/figure/14-2-carbon-in-the-aquatic-environment--still-a-draft url: ~ usage_limits: Figure may be copyright protected and permission may be required. Contact original figure source for information - attributes: ~ caption: "This conceptual diagram illustrates the exposure pathways by which climate change could affect human health. Exposure pathways exist within the context of other factors that positively or negatively influence health outcomes (gray side boxes). Key factors that influence vulnerability for individuals are shown in the right box and include social determinants of health and behavioral choices. Key factors that influence vulnerability at larger scales, such as natural and built environments, governance and management, and institutions, are shown in the left box. The extent to which climate change could alter the burden of disease in any location at any point in time will depend not just on the magnitude of local climate change but also on individual and population vulnerability, exposure to changing weather patterns, and capacity to manage risks, which may also be affected by climate change. Source: Balbus et al. 2016.{{< tbib '2' '6b118a80-8335-4c02-91cf-762c8bb14301' >}}" chapter_identifier: human-health create_dt: 2018-04-06T19:09:27 href: https://data.globalchange.gov/report/nca4/chapter/human-health/figure/climate-change-and-health.yaml identifier: climate-change-and-health lat_max: ~ lat_min: ~ lon_max: ~ lon_min: ~ ordinal: 1 report_identifier: nca4 source_citation: ~ submission_dt: 2018-11-23T14:45:50 time_end: ~ time_start: ~ title: Climate Change and Health uri: /report/nca4/chapter/human-health/figure/climate-change-and-health url: ~ usage_limits: Figure may be copyright protected and permission may be required. Contact original figure source for information - attributes: ~ caption: ~ chapter_identifier: urban-drainage create_dt: 2017-05-10T15:42:14 href: https://data.globalchange.gov/report/epa-multi-model-framework-for-quantitative-sectoral-impacts-analysis-2017/chapter/urban-drainage/figure/figure-14-1.yaml identifier: figure-14-1 lat_max: ~ lat_min: ~ lon_max: ~ lon_min: ~ ordinal: 1 report_identifier: epa-multi-model-framework-for-quantitative-sectoral-impacts-analysis-2017 source_citation: ~ submission_dt: 2017-10-17T21:00:37 time_end: ~ time_start: ~ title: Projected Regional Proactive Adaptation Costs for Urban Drainage Infrastructure uri: /report/epa-multi-model-framework-for-quantitative-sectoral-impacts-analysis-2017/chapter/urban-drainage/figure/figure-14-1 url: ~ usage_limits: Free to use with credit to the original figure source. - attributes: ~ caption: |+2 Observed and projected changes (compared to the 1901–1960 average) in near-surface air temperature for Indiana. Observed data are for 1900–2014. Projected changes for 2006–2100 are from global climate models for two possible futures: one in which greenhouse gas emissions continue to increase (higher emissions) and another in which greenhouse gas emissions increase at a slower rate (lower emissions). Temperatures in Indiana (orange line) have risen about 1°F since the beginning of the 20th century. Shading indicates the range of annual temperatures from the set of models. Observed temperatures are generally within the envelope of model simulations of the historical period (gray shading). Historically unprecedented warming is projected during the 21st century. Less warming is expected under a lower emissions future (the coldest years being about as warm as the hottest year in the historical record; green shading) and more warming under a higher emissions future (the hottest years being about 11°F warmer than the hottest year in the historical record; red shading). Source: CICS-NC and NOAA NCEI. chapter_identifier: indiana create_dt: 2015-08-12T00:00:00 href: https://data.globalchange.gov/report/noaa-led-state-summaries-2017/chapter/indiana/figure/in-observed-and-projected-temperature-change.yaml identifier: in-observed-and-projected-temperature-change lat_max: 41.7607 lat_min: 37.7717 lon_max: -88.0975 lon_min: -84.7846 ordinal: 1 report_identifier: noaa-led-state-summaries-2017 source_citation: ~ submission_dt: ~ time_end: 2100-12-31T00:00:00 time_start: 1900-01-01T00:00:00 title: Observed and Projected Temperature Change uri: /report/noaa-led-state-summaries-2017/chapter/indiana/figure/in-observed-and-projected-temperature-change url: ~ usage_limits: Free to use with credit to the original figure source. - attributes: ~ caption: 'Although the majority of the U.S. population lives in urban areas, most of the country is still classified as rural. In this map, counties are classified as rural if they do not include any cities with populations of 50,000 or more. (Figure source: USDA Economic Research Service 20135a9e656f-8a8f-497e-b11d-85db13fe4b4b).' chapter_identifier: rural create_dt: 2014-03-19T13:27:00 href: https://data.globalchange.gov/report/nca3/chapter/rural/figure/rural-counties.yaml identifier: rural-counties lat_max: ~ lat_min: ~ lon_max: ~ lon_min: ~ ordinal: 1 report_identifier: nca3 source_citation: 'USDA Economic Research Service 20135a9e656f-8a8f-497e-b11d-85db13fe4b4b' submission_dt: ~ time_end: ~ time_start: ~ title: Rural Counties uri: /report/nca3/chapter/rural/figure/rural-counties url: http://nca2014.globalchange.gov/report/sectors/rural-communities/graphics/rural-counties usage_limits: Free to use with credit to the original figure source. - attributes: ~ caption: 'Global mean temperature change for a number of scenarios as a function of cumulative CO2 emissions from preindustrial conditions, with time progressing along each individual line for each scenario. (Figure source: IPCC 2013;2ad39d48-c8d4-46cf-9a5c-0bc65a4da57c ©IPCC. Used with permission).' chapter_identifier: mitigation-pathways create_dt: 2016-10-14T20:50:04 href: https://data.globalchange.gov/report/climate-science-special-report/chapter/mitigation-pathways/figure/temp-change-vs--co2-emissions.yaml identifier: temp-change-vs--co2-emissions lat_max: ~ lat_min: ~ lon_max: ~ lon_min: ~ ordinal: 1 report_identifier: climate-science-special-report source_citation: ~ submission_dt: 2017-09-05T13:20:58 time_end: ~ time_start: ~ title: Cumulative Total Anthropogenic C02 Emissions from 1870 uri: /report/climate-science-special-report/chapter/mitigation-pathways/figure/temp-change-vs--co2-emissions url: ~ usage_limits: Free to use with credit to the original figure source.