reference : Quantifying changes in future intensity‐duration‐frequency curves using multimodel ensemble simulations

JSON YAML text HTML Turtle N-Triples JSON Triples RDF+XML RDF+JSON Graphviz SVG
/reference/0f9e5019-e16c-493c-bc41-b199d17bb393
Bibliographic fields
reftype Journal Article
Abstract During the last century, we have observed a warming climate with more intense precipitation extremes in some regions, likely due to increases in the atmosphere's water holding capacity. Traditionally, infrastructure design and rainfall‐triggered landslide models rely on the notion of stationarity, which assumes that the statistics of extremes do not change significantly over time. However, in a warming climate, infrastructures and natural slopes will likely face more severe climatic conditions, with potential human and socioeconomical consequences. Here we outline a framework for quantifying climate change impacts based on the magnitude and frequency of extreme rainfall events using bias corrected historical and multimodel projected precipitation extremes. The approach evaluates changes in rainfall Intensity‐Duration‐Frequency (IDF) curves and their uncertainty bounds using a nonstationary model based on Bayesian inference. We show that highly populated areas across the United States may experience extreme precipitation events up to 20% more intense and twice as frequent, relative to historical records, despite the expectation of unchanged annual mean precipitation. Since IDF curves are widely used for infrastructure design and risk assessment, the proposed framework offers an avenue for assessing resilience of infrastructure and landslide hazard in a warming climate.
Author Ragno, Elisa; AghaKouchak, Amir; Love, Charlotte A.; Cheng, Linyin; Vahedifard, Farshid; Lima, Carlos H. R.
DOI 10.1002/2017WR021975
Issue 3
Journal Water Resources Research
Pages 1751-1764
Title Quantifying changes in future intensity‐duration‐frequency curves using multimodel ensemble simulations
Volume 54
Year 2018
Bibliographic identifiers
_record_number 25381
_uuid 0f9e5019-e16c-493c-bc41-b199d17bb393