reference : Climate change and Ixodes tick-borne diseases of humans

JSON YAML text HTML Turtle N-Triples JSON Triples RDF+XML RDF+JSON Graphviz SVG
/reference/df236eb2-eed0-4f95-9101-adc5f0101ee1
Bibliographic fields
reftype Journal Article
Abstract The evidence that climate warming is changing the distribution of Ixodes ticks and the pathogens they transmit is reviewed and evaluated. The primary approaches are either phenomenological, which typically assume that climate alone limits current and future distributions, or mechanistic, asking which tick-demographic parameters are affected by specific abiotic conditions. Both approaches have promise but are severely limited when applied separately. For instance, phenomenological approaches (e.g. climate envelope models) often select abiotic variables arbitrarily and produce results that can be hard to interpret biologically. On the other hand, although laboratory studies demonstrate strict temperature and humidity thresholds for tick survival, these limits rarely apply to field situations. Similarly, no studies address the influence of abiotic conditions on more than a few life stages, transitions or demographic processes, preventing comprehensive assessments. Nevertheless, despite their divergent approaches, both mechanistic and phenomenological models suggest dramatic range expansions of Ixodes ticks and tick-borne disease as the climate warms. The predicted distributions, however, vary strongly with the models' assumptions, which are rarely tested against reasonable alternatives. These inconsistencies, limited data about key tick-demographic and climatic processes and only limited incorporation of non-climatic processes have weakened the application of this rich area of research to public health policy or actions. We urge further investigation of the influence of climate on vertebrate hosts and tick-borne pathogen dynamics. In addition, testing model assumptions and mechanisms in a range of natural contexts and comparing their relative importance as competing models in a rigorous statistical framework will significantly advance our understanding of how climate change will alter the distribution, dynamics and risk of tick-borne disease.
Author Ostfeld, Richard S.; Brunner, Jesse L.
DOI 10.1098/rstb.2014.0051
Issue 1665
Journal Philosophical Transactions of the Royal Society B: Biological Sciences
Pages 20140051
Title Climate change and Ixodes tick-borne diseases of humans
Volume 370
Year 2015
Bibliographic identifiers
_record_number 25694
_uuid df236eb2-eed0-4f95-9101-adc5f0101ee1