reference : Biochars impact on soil-moisture storage in an Ultisol and two Aridisols

JSON YAML text HTML Turtle N-Triples JSON Triples RDF+XML RDF+JSON Graphviz SVG
/report/nca4/chapter/agriculture-and-rural-communities/reference/35c90ff0-81c5-40f7-be34-8c7d832e69fc
Referencing Publications:
report
chapter

Reference URIs:
Bibliographic fields
reftype Journal Article
Abstract Biochar additions to soils can improve soil-water storage capability; however, there is sparse information identifying feedstocks and pyrolysis conditions that maximize this improvement. Nine biochars were pyrolyzed from five feedstocks at two temperatures, and their physical and chemical properties were characterized. Biochars were mixed at 2% wt wt−1 into a Norfolk loamy sand (Fine-loamy, kaolinitic, thermic Typic Kandiudult), a Declo silt loam (Coarse-loamy, mixed, superactive, mesic xeric Haplocalcid), or a Warden silt loam (Coarse-silty, mixed, superactive, mesic xeric Haplocambid). Untreated soils served as controls. Soils were laboratory incubated in pots for 127 days and were leached about every 30 days with deionized water. Soil bulk densities were measured before each leaching event. For 6 days thereafter, pot-holding capacities (PHC) for water were determined gravimetrically and were used as a surrogate for soil-moisture contents. Water tension curves were also measured on the biochar-treated and untreated Norfolk soil. Biochar surface area, surface tension, ash, C, and Si contents, in general, increased when produced under higher pyrolytic temperatures (≥500°C). Both switchgrass biochars caused the most significant water PHC improvements in the Norfolk, Declo, and Warden soils compared with the controls. Norfolk soil-water tension results at 5 and 60 kPa corroborated that biochar from switchgrass caused the most significant moisture storage improvements. Significant correlation occurred between the PHC for water with soil bulk densities. In general, biochar amendments enhanced the moisture storage capacity of Ultisols and Aridisols, but the effect varied with feedstock selection and pyrolysis temperature.
Author Novak, Jeffrey M.; Busscher, Warren J.; Watts, Donald W.; Amonette, James E.; Ippolito, James A.; Lima, Isabel M.; Gaskin, Julia; Das, K. C.; Steiner, Christoph; Ahmedna, Mohamed; Rehrah, Djaafar; Schomberg, Harry
DOI 10.1097/SS.0b013e31824e5593
ISSN 0038-075X
Issue 5
Journal Soil Science
Keywords Aridisol; biochar; GRACEnet; soil moisture; Ultisol
Pages 310-320
Title Biochars impact on soil-moisture storage in an Ultisol and two Aridisols
Volume 177
Year 2012
Bibliographic identifiers
_record_number 25544
_uuid 35c90ff0-81c5-40f7-be34-8c7d832e69fc