table : research-to-support-carbon-cycle-decision-making

Research to Support Carbon Cycle Decision Making

table 18.2


This table appears in chapter 18 of the Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report report.

This table is composed of this array :
cfabb1ed (10x3)
Decision-Making Goal Information Gap Research Activity Need
Prioritize activities and geographic regions for soil carbon sequestration and net greenhouse gas (GHG) emissions reductions. Predict changes in soil carbon based on regional changes in land-management practices. Calibrate existing soil models with field data and develop multivariate meta- analyses of field data.
Consider carbon stock changes in private and public forest management plans. Understand net carbon stock changes associated with land-management strategies. Assess forest carbon stocks and net changes in stocks at the regional and landscape levels associated with fire, regrowth, harvesting, thinning, and wildfire management.
Consider carbon stock changes in land-use planning and in legislation and policies that affect national and global land use. Understand the connections between direct and indirect land-use change and national and global changes in population, diet, affluence, technology, energy, and water use. Integrate science-based carbon stock and flux estimates, including uncertainty estimates, with global and regional socioeconomic models.
Increase the use of bioenergy, bioproducts, and renewable energy. Compare net emissions of alternative technologies to existing technologies and capture regional differences, if warranted. Conduct life cycle analyses (LCAs) for all proposed bioenergy, bioproducts, and renewable technologies and compare these analyses with LCAs for fossil fuel technologies.
Incentivize sustainable bioenergy. Develop accurate bioenergy emissions accounting at individual facilities. Calibrate existing forestry models to accurately reflect forest owner planting responses to market signals.
Protect vulnerable high-carbon landscapes. Identify land areas at high risk of settlement conversion. Project trends in urban development and land-management choices.
Maximize carbon mitigation on lands at risk of natural disturbance. Project natural disturbances and their carbon impacts. Develop region-specific carbon accounting protocols and management guidance.
Optimize national gross domestic production (GDP), its factors, and GHG emissions. Understand factors of GDP and emissions and how those factors can be used to decrease emissions while positively affecting GDP. Include GHG emissions in analyses of GDP and national economic growth.
Optimize energy production and consumption for reduced carbon emissions. Understand fuel mixes, substitutes, combustion efficiencies, energy intensity, and carbon intensity associated with energy production and use. Develop and integrate models that investigate carbon intensity of fuel use at local to national scales, with feedbacks to other related sectors (e.g., land resources and bioenergy).
You are viewing /report/second-state-carbon-cycle-report-soccr2-sustained-assessment-report/chapter/carbon-cycle-science-in-support-of-decision-making/table/research-to-support-carbon-cycle-decision-making in HTML

Alternatives : JSON YAML Turtle N-Triples JSON Triples RDF+XML RDF+JSON Graphviz SVG